吉林省白城市洮南十中2024届高一数学第一学期期末调研模拟试题含解析_第1页
吉林省白城市洮南十中2024届高一数学第一学期期末调研模拟试题含解析_第2页
吉林省白城市洮南十中2024届高一数学第一学期期末调研模拟试题含解析_第3页
吉林省白城市洮南十中2024届高一数学第一学期期末调研模拟试题含解析_第4页
吉林省白城市洮南十中2024届高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省白城市洮南十中2024届高一数学第一学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.=(

)A. B.C. D.2.函数是A.周期为的奇函数 B.周期为的奇函数C.周期为的偶函数 D.周期为的偶函数3.已知函数,,的零点依次为,则以下排列正确的是()A. B.C. D.4.今有一组实验数据如下:x23456y1.52.012.985.028.98现准备用下列函数中的一个近似地表示这些数据所满足的规律,其中最接近的一个是()A. B.C. D.5.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.6.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}7.直线的倾斜角为().A. B.C. D.8.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.9.若定义域为R的函数满足,且,,有,则的解集为()A. B.C. D.10.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.12.若角的终边与以原点为圆心的单位圆交于点,则的值为___________.13.写出一个在区间上单调递增幂函数:______14.已知,,,则有最大值为__________15.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算方法.如图所示,弧田是由圆弧和其对弦围成的图形,若弧田所在圆的半径为6,弦的长是,则弧田的弧长为________;弧田的面积是________.16.已知甲、乙、丙三人去参加某公司面试,他们被该公司录取的概率分别是,且三人录取结果相互之间没有影响,则他们三人中恰有两人被录取的概率为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,(1)若,求的值;(2)若,,求的值域18.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值19.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间20.已知,,其中(1)若是的充分条件,求实数的取值范围;(2)是否存在,使得是的必要条件?若存在,求出的值;若不存在,请说明理由21.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由题意可得:.本题选择A选项2、A【解题分析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A3、B【解题分析】在同一直角坐标系中画出,,与的图像,数形结合即可得解【题目详解】函数,,的零点依次为,在同一直角坐标系中画出,,与的图像如图所示,由图可知,,,满足故选:B.【题目点拨】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解4、B【解题分析】根据表格中的数据,作出散点图,结合选项和函数的单调性,逐项判定,即可求解.【题目详解】根据表格中的数据,作出散点图,如图所示,根据散点图可知,随着的增大,的值增大,并且增长速度越来越快,结合选项:函数增长速度越来越缓慢,不符合题意;函数增长速度越来越快,符合题意;函数,增长速度不变,不符合题意;而函数,当时,可得;当时,可得,此时与真实数据误差较大,所以最接近的一个函数是.故选:B.5、D【解题分析】根据题意可得不等式,解不等式可求得,由此可得结论.【题目详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.6、B【解题分析】由交集定义求得结果.【题目详解】由交集定义知故选:B7、B【解题分析】设直线的倾斜角为∵直线方程为∴∵∴故选B8、C【解题分析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【题目详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C9、A【解题分析】根据已知条件易得关于直线x=2对称且在上递减,再应用单调性、对称性求解不等式即可.【题目详解】由题设知:关于直线x=2对称且在上单调递减由,得:,所以,解得故选:A10、A【解题分析】先计算,得到高线的斜率,又高线过点,计算得到答案.【题目详解】,高线过点∴边上的高线所在的直线方程为,即.故选【题目点拨】本题考查了高线的计算,利用斜率相乘为是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、1800【解题分析】由题共有产品4800名,抽取样本为80,则抽取的概率为;,再由50件产品由甲设备生产,则乙设备生产有30件,则乙设备在总体中有;考点:抽样方法的随机性.12、##【解题分析】直接根据三角函数定义求解即可.【题目详解】解:因为角的终边与以原点为圆心的单位圆交于点,所以根据三角函数单位圆的定义得故答案为:13、x(答案不唯一)【解题分析】由幂函数的性质求解即可【题目详解】因为幂函数在区间上单调递增,所以幂函数可以是,故答案为:(答案不唯一)14、4【解题分析】分析:直接利用基本不等式求xy的最大值.详解:因为x+y=4,所以4≥,所以故答案为4.点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.15、①.②.【解题分析】在等腰三角形中求得,由扇形弧长公式可得弧长,求出扇形面积减去三角形面积可得弧田面积【题目详解】∵弧田所在圆的半径为6,弦的长是,∴弧田所在圆的圆心角,∴弧田的弧长为;扇形的面积为,三角形的面积为,∴弧田的面积为.故答案为:;16、##0.15【解题分析】利用相互独立事件概率乘法公式分别求出甲和乙被录取的概率、甲和丙被录取的概率、乙和丙被录取的概率,然后即可求出他们三人中恰有两人被录取的概率.【题目详解】因为甲、乙、丙三人被该公司录取的概率分别是,且三人录取结果相互之间没有影响,甲和乙被录取的概率为,甲和丙被录取的概率为,乙和丙被录取的概率为则他们三人中恰有两人被录取的概率为,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据的坐标关系,得到,再代入即可求值.(2)用正弦、余弦,二倍角公式和辅助角公式化简,得到,根据,求出的值域.详解】(1)若,则,∴.∴.(2),∵,∴,∴,∴,∴的值域为【题目点拨】本题第一问主要考查向量平行的坐标表示和正切二倍角公式,考查计算能力.第二问主要考查正弦,余弦的二倍角公式和辅助角公式以及三角函数的值域问题,属于中档题.18、(1)(2)(3)【解题分析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶函数的性质,即可求出【题目详解】(1)因为函数图象过点,所以,解得.则,因为,所以,所以函数的值域为.(2)方程有实根,即,有实根,构造函数,则,因为函数在R上单调递减,而在(0,)上单调递增,所以复合函数是R上单调递减函数所以在上,最小值,最大值为,即,所以当时,方程有实根(3),是R上的偶函数,则满足,即恒成立,则恒成立,则恒成立,即恒成立,故,则恒成立,所以.【题目点拨】本题考查了函数的奇偶性的应用,及对数函数的性质,属于中档题19、(1)条件选择见解析,;(2)单调递增区间为,.【解题分析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因为,所以,所以,又因为,所以,所以【小问2详解】解:依题意,令,,解得,,所以的单调递增区间为,.20、(1)(2)不存在,理由见解析【解题分析】(1)解不等式,由充分条件定义得出实数的取值范围;(2)由是的必要条件得出不等关系,结合作出判断.【小问1详解】由得,故有由得,即若p是q的充分条件,则成立,即得.【小问2详解】因为,所以或若是q的必要条件,则成立,则或,显然这两个不等式均与矛盾,故不存在满足条件的m21、(1)(2)【解题分析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论