2024届内蒙古通辽甘旗卡第二高级中学数学高一上期末经典模拟试题含解析_第1页
2024届内蒙古通辽甘旗卡第二高级中学数学高一上期末经典模拟试题含解析_第2页
2024届内蒙古通辽甘旗卡第二高级中学数学高一上期末经典模拟试题含解析_第3页
2024届内蒙古通辽甘旗卡第二高级中学数学高一上期末经典模拟试题含解析_第4页
2024届内蒙古通辽甘旗卡第二高级中学数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古通辽甘旗卡第二高级中学数学高一上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.242.下列函数中,值域是的是A. B.C. D.3.如图,的斜二测直观图为等腰,其中,则原的面积为()A.2 B.4C. D.4.已知,并且是终边上一点,那么的值等于A. B.C. D.5.“ω=2”是“π为函数的最小正周期”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知向量,,若,则()A. B.C.2 D.37.某单位共有名职工,其中不到岁的有人,岁的有人,岁及以上的有人,现用分层抽样的方法,从中抽出名职工了解他们的健康情况.如果已知岁的职工抽取了人,则岁及以上的职工抽取的人数为()A. B.C. D.8.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是A. B.C. D.9.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间(单位:天)与病情爆发系数之间,满足函数模型:,当时,标志着疫情将要大面积爆发,则此时约为()(参考数据:)A. B.C. D.10.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,是定义在区间上的奇函数,则_________.12.已知正三棱柱的棱长均为2,则其外接球体积为__________13.若“”是真命题,则实数的最小值为_____________.14.经过,两点的直线的倾斜角是__________.15.函数(且)的定义域为__________16.函数的单调递增区间为________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)试判断函数的奇偶性并证明;18.已知函数的部分图象如图所示,且在处取得最大值,图象与轴交于点(1)求函数的解析式;(2)若,且,求值19.已知函数(1)当时,求的取值范围;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数m的取值范围20.已知.(1)化简;(2)若是第三象限角,且,求的值.21.已知函数.(1)求其最小正周期和对称轴方程;(2)当时,求函数的单调递减区间和值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图2、D【解题分析】分别求出各函数的值域,即可得到答案.【题目详解】选项中可等于零;选项中显然大于1;选项中,,值域不是;选项中,故.故选D.【题目点拨】本题考查函数的性质以及值域的求法.属基础题.3、D【解题分析】首先算出直观图面积,再根据平面图形与直观图面积比为求解即可.【题目详解】因为等腰是一平面图形的直观图,直角边,所以直角三角形的面积是.又因为平面图形与直观图面积比为,所以原平面图形的面积是.故选:D4、A【解题分析】由题意得:,选A.5、A【解题分析】直接利用正弦型函数的性质的应用,充分条件和必要条件的应用判断A、B、C、D的结论【题目详解】解:当“ω=2”时,“函数f(x)=sin(2x﹣)的最小正周期为π”当函数f(x)=sin(ωx﹣)的最小正周期为π”,故ω=±2,故“ω=2”是“π为函数的最小正周期”的充分不必要条件;故选:A6、A【解题分析】先计算的坐标,再利用可得,即可求解.【题目详解】,因为,所以,解得:,故选:A7、A【解题分析】计算抽样比例,求出不到35岁的应抽取人数,再求50岁及以上的应抽取人数.【题目详解】计算抽样比例为,所以不到35岁的应抽取(人,所以50岁及以上的应抽取(人.故选:.8、A【解题分析】汽车启动加速过程,随时间增加路程增加的越来越快,汉使图像是凹形,然后匀速运动,路程是均匀增加即函数图像是直线,最后减速并停止,其路程仍在增加,只是增加的越来越慢即函数图像是凸形.故选A考点:函数图像的特征9、B【解题分析】根据列式求解即可得答案.【题目详解】解:因为,,所以,即,所以,由于,故,所以,所以,解得.故选:B.【题目点拨】本题解题的关键在于根据题意得,再结合已知得,进而根据解方程即可得答案,是基础题.10、A【解题分析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【题目详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、27【解题分析】由于奇函数的定义域必然关于原点对称,可得m的值,再求【题目详解】由于奇函数的定义域必然关于原点对称∴m=3,故f(m)=故答案为27【题目点拨】本题主要考查函数的奇偶性,利用了奇函数的定义域必然关于原点对称,属于基础题12、【解题分析】分别是上,下底面的中心,则的中点为几何体的外接球的球心,13、1【解题分析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.14、【解题分析】经过,两点的直线的斜率是∴经过,两点的直线的倾斜角是故答案为15、【解题分析】根据对数的性质有,即可求函数的定义域.【题目详解】由题设,,可得,即函数的定义域为.故答案为:16、【解题分析】函数由,复合而成,求出函数的定义域,根据复合函数的单调性即可得结果.【题目详解】函数由,复合而成,单调递减令,解得或,即函数的定义域为,由二次函数的性质知在是减函数,在上是增函数,由复合函数的单调性判断知函数的单调递增区间,故答案为.【题目点拨】本题考查用复合函数的单调性求单调区间,此题外层是一对数函数,故要先解出函数的定义域,在定义域上研究函数的单调区间,这是本题易失分点,切记!三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为奇函数;证明见解析;(2).【解题分析】(1)利用奇函数的定义即证;(2)由题可得当时,为增函数,法一利用对勾函数的性质可得,即求;法二利用函数单调性的定义可得成立,即求.【小问1详解】当时,,则,当;当时,,满足;当时,,则,,所以对,均有,即函数为奇函数;【小问2详解】∵函数为R上的奇函数,且,,,所以函数在上为增函数,则在定义域内为增函数,解法一:因函数为奇函数,且在定义域内为增函数,则当时,为增函数当时,因为,只需要,则;解法二:因为函数为奇函数,且在定义域内为增函数,则当时,为增函数设对于任意,且,则有因为,则,又因为,则,欲使当时,为增函数,则,所以,当时,;;,所以,为R上增函数时,18、(1)(2)【解题分析】(1)根据图象可得函数的周期,从而求得,结合函数在处取得最大值,可求得的值,再根据图象与轴交于点,可求得,从而可得解;(2)根据(1)及角的范围求得,,再利用两角差的余弦公式进行化简可求解.【小问1详解】由图象可知函数的周期为,所以.又因为函数在处取得最大值所以,所以,因为,所以,故.又因为,所以,所以.【小问2详解】由(1)有,因为,则,由于,从而,因此.所以.19、(1)(2)【解题分析】(1)首先利用三角恒等变换公式化简函数解析式,再根据的取值范围,求出的取值范围,最后根据正弦函数的性质计算可得;(2)依题意可得,再由(1)及正弦函数的性质计算可得;【小问1详解】解:因为即∵,∴,∴,∴,故的取值范围为【小问2详解】解:∵,∴由(1)知,∵有两个不同的实数根,因为在上单调递增,在上单调递减,且当时,由正弦函数图象可知,解得,故实数的取值范围是20、(1);(2).【解题分析】(1)根据诱导公式化简即可得答案;(2)根据诱导公式,结合已知条件得,再根据同角三角函数关系求值即可.【题目详解】(1).(2)∵,∴,又是第三象限角,∴,故.【题目点拨】本题考查诱导公式化简求值,考查运算能力,基础题.21、(1)最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论