




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省靖远三中2024届高一数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设的两根是,则A. B.C. D.2.若,则()A. B.C.或1 D.或3.已知直线的斜率为1,则直线的倾斜角为A. B.C. D.4.已知,则的值为()A. B.C.1 D.25.已知角的终边过点,则()A. B.C. D.6.某服装厂2020年生产了15万件服装,若该服装厂的产量每年以20%的增长率递增,则该服装厂的产量首次超过40万件的年份是(参考数据:取,)()A.2024届 B.2024届C.2025年 D.2026年7.已知,,,则a,b,c的大小关系正确的是()A.a>b>c B.b>c>aC.c>b>a D.c>a>b8.下面四种说法:①若直线异面,异面,则异面;②若直线相交,相交,则相交;③若,则与所成的角相等;④若,,则.其中正确的个数是()A.4 B.3C.2 D.19.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.10.若不计空气阻力,则竖直上抛的物体距离抛出点的高度h(单位:)与时间t(单位:)满足关系式(取,为上抛物体的初始速度).一同学在体育课上练习排球垫球,某次垫球,排球离开手臂竖直上抛的瞬时速度,则在不计空气阻力的情况下,排球在垫出点2m以上的位置大约停留()A.1 B.1.5C.1.8 D.2.2二、填空题:本大题共6小题,每小题5分,共30分。11.方程在上的解是______.12.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为__________.(答案用,表示)13.函数的零点为_________________.14.的值为_______15.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.16.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的偶函数,且当时,,函数在轴左侧的图象如图所示(1)求函数的解析式;(2)若关于的方程有个不相等的实数根,求实数的取值范围18.已知幂函数的图象经过点.(1)求的解析式;(2)用定义证明:函数在区间上单调递增.19.已知A(3,7)、B(3,-1)、C(9,-1),求△ABC的外接圆方程.20.已知函数为奇函数.(1)求的值;(2)判断并证明在的单调性.21.计算:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】详解】解得或或即,所以故选D2、A【解题分析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【题目详解】由,两边平方得,或1,,.故选:A.【题目点拨】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.3、A【解题分析】设直线的倾斜角为,则由直线的斜率,则故故选4、A【解题分析】先使用诱导公式,将要求的式子进行化简,然后再将带入即可完成求解.【题目详解】由已知使用诱导公式化简得:,将代入即.故选:A.5、A【解题分析】根据三角函数的定义计算可得;【题目详解】解:因为角终边过点,所以;故选:A6、D【解题分析】设该服装厂的产量首次超过40万件的年份为n,进而得,再结合对数运算解不等式即可得答案.【题目详解】解:设该服装厂的产量首次超过40万件的年份为n,则,得,因为,所以故选:D7、C【解题分析】根据对数函数的单调性和中间数可得正确的选项.【题目详解】因为,故即,而,故,即,而,故,故即,故,故选:C8、D【解题分析】对于①,直线a,c的关系为平行、相交或异面.故①不正确对于②,直线a,c的关系为平行、相交或异面.故②不正确对于③,由异面直线所成角的定义知正确对于④,直线a,c关系为平行、相交或异面.故④不正确综上只有③正确.选D9、C【解题分析】利用扇形的面积公式即可求解.【题目详解】设扇形的半径为,则扇形的面积,解得:,故选:C10、D【解题分析】将,代入,得出时间t,再求间隔时间即可.【题目详解】解:将,代入,得,解得,所以排球在垫出点2m以上的位置大约停留.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】根据三角函数值直接求角.【题目详解】由,得或,即或,又,故,故答案为.12、【解题分析】由题意得的三边分别为则由可得,所以,三角数三边分别为,因为,所以三个半径为的扇形面积之和为,由几何体概型概率计算公式可知,故答案为.【方法点睛】本题题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.13、.【解题分析】解方程即可.【题目详解】令,可得,所以函数的零点为.故答案为:.【题目点拨】本题主要考查求函数的零点,属基础题.14、【解题分析】直接按照诱导公式转化计算即可【题目详解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案为:【题目点拨】本题考查诱导公式的应用:求值.一般采用“大角化小角,负角化正角”的思路进行转化15、【解题分析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【题目详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则或,解得.故答案为:【题目点拨】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.16、(1)(3)【解题分析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【题目详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【题目点拨】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用可求时的解析式,当时,利用奇偶性可求得时的的解析式,由此可得结果;(2)作出图象,将问题转化为与有个交点,数形结合可得结果.【小问1详解】由图象知:,即,解得:,当时,;当时,,,为上的偶函数,当时,;综上所述:;【小问2详解】为偶函数,图象关于轴对称,可得图象如下图所示,有个不相等的实数根,等价于与有个不同的交点,由图象可知:,即实数的取值范围为.18、(1);(2)证明见解析.【解题分析】(1)设幂函数,由得α的值即可;(2)任取且,化简并判断的正负即可得g(x)的单调性.小问1详解】设,则,解得,∴;【小问2详解】由(1)可知,任取且,则,∵,则,,故,因此函数在上为增函数.19、【解题分析】设△ABC外接圆的方程为x2+y2+Dx+Ey+F=0,把A(1,0),B(0,1),C(3,4)代入,能求出△ABC外接圆的方程【题目详解】设外接圆的方程为.将ABC三点坐标带人方程得:解得圆的方程为【题目点拨】本题考查圆的方程的求法,解题时要认真审题,注意待定系数法的合理运用20、(1)(2)在上单调递增,在上单调递减,证明过程见解析.(1)【解题分析】(1)根据奇函数的性质和定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车辆借用与道路救援应急处理合同
- 财务外包与财务合规性建设合同
- 车辆所有权转让抵债协议书示例
- 车辆租赁押金及事故责任认定合同范本
- 新媒体视频拍摄与制作(微课版)课后习题答案 第1章
- 智能停车服务车位使用权转让合同范本
- 大连樱桃直播带货运作机制研究
- 四年级数学除数是两位数的除法题单元考核模拟题大全附答案
- 一年级数学20以内三个数加减混合运算水平自测例题大全附答案
- 云端元旦活动方案
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)培训课件
- 美丽乡村建设项目可行性分析报告
- 钢结构焊缝外观质量检查
- 深度学习的基本概念试题及答案
- 线下拉新协议
- 急性中毒诊断与治疗中国专家共识
- 《选品与采购》课件-6.采购绩效评估
- 骨盆骨折的医疗护理查房
- 2025-2030中国智能助听器行业市场发展趋势与前景展望战略研究报告
- 园艺学:植物嫁接技术的创新与应用
- 2025商丘市辅警考试试卷真题
评论
0/150
提交评论