2024届黑龙江省齐市地区普高联谊高一上数学期末经典模拟试题含解析_第1页
2024届黑龙江省齐市地区普高联谊高一上数学期末经典模拟试题含解析_第2页
2024届黑龙江省齐市地区普高联谊高一上数学期末经典模拟试题含解析_第3页
2024届黑龙江省齐市地区普高联谊高一上数学期末经典模拟试题含解析_第4页
2024届黑龙江省齐市地区普高联谊高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省齐市地区普高联谊高一上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中为偶函数的是()A. B.C. D.2.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或23.已知函数,若存在实数,()满足,则的最小值为()A B.C. D.14.将函数的图像先向右平移个单位,再把所得函数图像横坐标变为原来的,纵坐标不变,得到函数的图像,若函数在上没有零点,则的取值范围是()A. B.C. D.5.已知,,,则下列关系中正确的是A. B.C. D.6.在实数的原有运算法则中,补充定义新运算“”如下:当时,;当时,,已知函数,则满足的实数的取值范围是A. B.C. D.7.已知直线、、与平面、,下列命题正确的是()A若,则 B.若,则C.若,则 D.若,则8.若曲线与直线始终有交点,则的取值范围是A. B.C. D.9.命题:,,则该命题的否定为()A., B.,C., D.,10.设则下列说法正确的是()A.方程无解 B.C.奇函数 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,且关于的方程有且仅有一个实数根,那实数的取值范围为________12.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).13.已知函数若函数有三个不同的零点,且,则的取值范围是____14.已知定义在上的偶函数在上递减,且,则不等式的解集为__________15.若不等式在上恒成立,则实数a的取值范围为____.16.若函数的定义域为[-2,2],则函数的定义域为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求解下列问题:(1)已知,,求的值;(2)已知,求的值.18.已知函数.(1)用函数单调性定义证明:函数在区间上是严格增函数;(2)函数在区间上是单调函数吗?为什么?19.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB120.如图,在四棱锥中,,,,且,分别为的中点.(1)求证:平面;(2)求证:平面;(3)若二面角的大小为,求四棱锥的体积.21.已知集合A={x|2-a⩽x⩽2+a},B={x|(1)当a=3时,求A∩B,A∪∁(2)若A∩B=∅,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】利用函数奇偶性的定义可判断A、B、C选项中各函数的奇偶性,利用特殊值法可判断D选项中函数的奇偶性.【题目详解】对于A选项,令,该函数的定义域为,,所以,函数为奇函数;对于B选项,令,该函数的定义域为,,所以,函数为偶函数;对于C选项,函数的定义域为,则函数为非奇非偶函数;对于D选项,令,则,,且,所以,函数为非奇非偶函数.故选:B.【题目点拨】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.2、C【解题分析】由题意利用幂函数的定义和性质,得出结论【题目详解】幂函数为偶函数,,且为偶数,则实数,故选:C3、A【解题分析】令=t,分别解得,,得到,根据参数t的范围求得最小值.【题目详解】当0≤x≤2时,0≤x2≤4,当2<x≤3时,2<3x-4≤5,则[0,4]∩(2,5]=(2,4],令=t∈(2,4],则,,∴,当,即时,有最小值,故选:A.4、C【解题分析】先由图象的变换求出的解析式,再由定义域求出的范围,再利用正弦函数的图象和性质,求得的取值范围.【题目详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,由,则,若函数在上没有零点,结合正弦函数的图象观察则∴,,解得,又,解得,当时,解得,当时,,可得,.故选:C【题目点拨】本题考查正弦型的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式求解,属于较难题.第II卷5、C【解题分析】利用函数的单调性、正切函数的值域即可得出【题目详解】,,∴,又∴,则下列关系中正确的是:故选C【题目点拨】本题考查了指对函数的单调性、三角函数的单调性的应用,属于基础题6、C【解题分析】当时,;当时,;所以,易知,在单调递增,在单调递增,且时,,时,,则在上单调递增,所以得:,解得,故选C点睛:新定义的题关键是读懂题意,根据条件,得到,通过单调性分析,得到在上单调递增,解不等式,要符合定义域和单调性的双重要求,则,解得答案7、D【解题分析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【题目详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因,所以平面内存在直线,若,则,且,所以,故D正确.故选:D8、A【解题分析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【题目详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【题目点拨】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.9、B【解题分析】根据特称命题的否定可得出结论.【题目详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【题目点拨】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.10、B【解题分析】根据函数的定义逐个分析判断【题目详解】对于A,当为有理数时,由,得,所以A错误,对于B,因为为无理数,所以,所以B正确,对于C,当为有理数时,也为有理数,所以,当为无理数时,也为无理数,所以,所以为偶函数,所以C错误,对于D,因为,所以,所以D错误,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用数形结合的方法,将方程根的问题转化为函数图象交点的问题,观察图象即可得到结果.【题目详解】作出的图象,如下图所示:∵关于的方程有且仅有一个实数根,∴函数的图象与有且只有一个交点,由图可知,则实数的取值范围是.故答案为:.12、①②【解题分析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.13、;【解题分析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.14、【解题分析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理15、【解题分析】把不等式变形为,分和情况讨论,数形结合求出答案.【题目详解】解:变形为:,即在上恒成立令,若,此时在上单调递减,,而当时,,显然不合题意;当时,画出两个函数的图象,要想满足在上恒成立,只需,即,解得:综上:实数a的取值范围是.故答案为:16、【解题分析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】(1)由同角三角函数的基本关系求解即可;(2)由商数关系化简求解即可.【小问1详解】,,【小问2详解】18、(1)证明见解析;(2)不是单调函数,理由见解析.【解题分析】(1)根据函数解析式在给定区间内任取,判断对应函数值的大小关系,即可说明函数的单调性.(2)利用三元基本不等式求在上的最值并确定等号成立的条件,即可判断的单调性.【小问1详解】由题设,且,任取,则,又,,,,即,∴,即,∴函数在区间上是严格增函数;【小问2详解】由题设,在上,当且仅当时等号成立,∴,显然在的两侧单调性不同.∴在上不是单调函数.19、(1)证明详见解析;(2)证明详见解析.【解题分析】(1)通过证明,来证得平面.(2)通过证明平面,来证得平面平面.【题目详解】(1)由于分别是的中点,所以.由于平面,平面,所以平面.(2)由于平面,平面,所以.由于,所以平面,由于平面,所以平面平面.【题目点拨】本小题主要考查线面平行证明,考查面面垂直的证明,属于中档题.20、(1)见解析(2)见解析(3)【解题分析】(1)取的中点,根据题意易证四边形为平行四边形,所以,从而易证结论;(2)由,可得线面垂直;(3)由二面角的大小为,可得,求出底面直角梯形的面积,进而可得四棱锥的体积.试题解析:(1)取的中点,连接,∵为中点,∴,由已知,∴,∴四边形为平行四边形,∴.又平面,平面,∴平面.(2)连接,∵,∴,又,∴又,为中点,∴,∴,∵,∴平面.(3)取的中点,连接.∴,,∵,∴,又,为的中点,∴,故为二面角的平面角.∴,∵平面,∴,由已知,四边形为直角梯形,∴,∴.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.21、(1)A∩B={x|-1⩽x⩽1或4⩽x⩽5};A∪∁RB【解题分析】(1)a=3时求出集合A,B,再根据集合的运算性质计算A∩B和A∪∁(2)根据A∩B=∅,讨论A=∅和A≠∅时a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论