




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省洛阳市栾川县实验高中2024届数学高一上期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.22.冰糖葫芦是中国传统小吃,起源于南宋.由山楂串成的冰糖葫芦如图1所示,若将山楂看成是大小相同的圆,竹签看成一条线段,如图2所示,且山楂的半径(图2中圆的半径)为2,竹签所在的直线方程为,则与该串冰糖葫芦的山楂都相切的直线方程为()A. B.C. D.3.若是第二象限角,是其终边上的一点,且,则()A. B.C. D.或4.已知函数,则()A.0 B.1C.2 D.105.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线,与圆的位置关系是“平行相交”,则实数的取值范围为A. B.C. D.6.设集合,,则()A B.C. D.7.集合,则A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)8.函数的部分图象大致为()A B.C. D.9.下图是一几何体的平面展开图,其中四边形为正方形,,,,为全等的等边三角形,分别为的中点.在此几何体中,下列结论中错误的为A.直线与直线共面 B.直线与直线是异面直线C.平面平面 D.面与面的交线与平行10.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)二、填空题:本大题共6小题,每小题5分,共30分。11.函数满足,则值为_____.12.若圆心角为的扇形的弧长为,则该扇形面积为__________.13.已知角的终边经过点,则的值等于______.14.已知在区间上单调递减,则实数的取值范围是____________.15.已知函数(,且)的图象恒过定点,且点在幂函数的图象上,则__________.16.在△ABC中,,面积为12,则=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的部分图像如图所示(1)求的解析式;(2)已知函数求的值域18.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求证:直线CM⊥面DFN;(2)求点C到平面FDM的距离19.求满足下列条件的圆的方程:(1)经过点,,圆心在轴上;(2)经过直线与的交点,圆心为点.20.义域为的函数满足:对任意实数x,y均有,且,又当时,.(1)求的值,并证明:当时,;(2)若不等式对任意恒成立,求实数的取值范围.21.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】首先根据解析式求值,结合奇函数有即可求得【题目详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【题目点拨】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值2、D【解题分析】利用平行线间距离公式即得.【题目详解】由题可设与该串冰糖葫芦的山楂都相切的直线方程为,则,∴,∴与该串冰糖葫芦的山楂都相切的直线方程为.故选:D.3、C【解题分析】根据余弦函数的定义有,结合是第二象限角求解即可.【题目详解】由题设,,整理得,又是第二象限角,所以.故选:C4、B【解题分析】根据分段函数的解析式直接计算即可.【题目详解】.故选:B.5、D【解题分析】根据定义先求出l1,l2与圆相切,再求出l1,l2与圆外离,结合定义即可得到答案.【题目详解】圆C的标准方程为(x+1)2+y2=b2.由两直线平行,可得a(a+1)-6=0,解得a=2或a=-3.当a=2时,直线l1与l2重合,舍去;当a=-3时,l1:x-y-2=0,l2:x-y+3=0.由l1与圆C相切,得,由l2与圆C相切,得.当l1、l2与圆C都外离时,.所以,当l1、l2与圆C“平行相交”时,b满足,故实数b的取值范围是(,)∪(,+∞)故选D.6、C【解题分析】利用集合的交集运算求解.【题目详解】因为集合,,所以,故选:C7、B【解题分析】先求出集合A,B,再求两集合的交集即可【题目详解】解:由,得,所以,由于,所以,所以,所以,故选:B8、C【解题分析】根据题意,分析可得函数为奇函数,当时,有,利用排除法分析可得答案.详解】解:根据题意,对于函数,有函数,即函数为奇函数,图象关于原点对称,故排除A、B;当时,,则恒有,排除D;故选:C.9、C【解题分析】画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确故答案选C10、A【解题分析】根据二次根式的性质求出函数的定义域即可【题目详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【题目点拨】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求得后,由可得结果.【题目详解】,,.故答案为:.12、【解题分析】根据扇形面积公式计算即可.【题目详解】设弧长为,半径为,为圆心角,所以,由扇形面积公式得.故答案为:13、【解题分析】根据三角函数定义求出、的值,由此可求得的值.【题目详解】由三角函数的定义可得,,因此,.故答案为:.14、【解题分析】根据复合函数单调性的判断方法,结合对数函数的定义域,即可求得的取值范围.【题目详解】在区间上单调递减由对数部分为单调递减,且整个函数单调递减可知在上单调递增,且满足所以,解不等式组可得即满足条件的取值范围为故答案为:【题目点拨】本题考查了复合函数单调性的应用,二次函数的单调性,对数函数的性质,属于中档题.15、【解题分析】先求出定点的坐标,再代入幂函数,即可求出解析式.【题目详解】令可得,此时,所以函数(,且)的图象恒过定点,设幂函数,则,解得,所以,故答案为:【题目点拨】关键点点睛:本题的关键点是利用指数函数的性质和图象的特点得出,设幂函数,代入即可求得,.16、【解题分析】利用面积公式即可求出sinC.使用二倍角公式求出cos2C【题目详解】由题意,在中,,,面积为12,则,解得∴故答案为【题目点拨】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据图像和“五点法”即可求出三角函数的解析式;(2)根据三角恒等变换可得,结合x的取值范围和正弦函数的性质即可得出结果.小问1详解】由图像可知的最大值是1,所以,当时,,可得,又,所以当时,有最小值,所以,解得,所以;【小问2详解】,由可得所以,所以.18、(1)见解析;(2)【解题分析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离【题目详解】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因为长方形ABCD,DC=CN=2,所以四边形DCNM是正方形,∴DN⊥CM,因为平面MNFE⊥平面ABCD,FN⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因为CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),设平面FDM的法向量=(x,y,z),则,取x=1,得=(1,0,-1),∴点C到平面FDM的距离d===【题目点拨】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题19、(1)(2)【解题分析】(1)设出圆的方程,代入A、B两点坐标,求出圆心和半径,从而求出圆的方程;(2)先求出交点坐标,进而求出半径,写出圆的方程.【小问1详解】设圆的方程为,由题意得:,解得:,所以圆的方程为;【小问2详解】联立与,解得:,所以交点为,则圆的半径为,所以圆的方程为.20、(1)答案见解析;(2)或.【解题分析】(1)利用赋值法计算可得,设,则,利用拆项:即可证得:当时,;(2)结合(1)的结论可证得是增函数,据此脱去f符号,原问题转化为在上恒成立,分离参数有:恒成立,结合基本不等式的结论可得实数的取值范围是或.试题解析:(1)令,得,令,得,令,得,设,则,因为,所以;(2)设,
,
因为所以,所以为增函数,所以,
即,上式等价于对任意恒成立,因为,所以上式等价于对任意恒成立,设,(时取等),所以,解得或.21、(1)当时,定义域为;当时,定义域为.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急性腹膜炎病人的护理
- 2025年锥虫焦虫病防治药合作协议书
- 尿路感染的治疗与护理
- 护理学新生儿黄疸
- 2025年电网系统电力电缆项目合作计划书
- 2025年中小学生安全教育日活动方案
- 陕西航空职业技术学院《生涯辅导》2023-2024学年第二学期期末试卷
- 陕西铁路工程职业技术学院《安全工程专业英语》2023-2024学年第二学期期末试卷
- 随州市广水市2025届五年级数学第二学期期末调研模拟试题含答案
- 2025年交联电力电缆项目合作计划书
- 2024-2025学年二年级语文下册统编版第三单元基础达标卷(单元测试)(含答案)
- 2024年全国单招护理专业综合题库
- 2025年土木工程业务能力试题及答案
- (一模)2025年广州市普通高中毕业班综合测试(一)历史试卷
- 江门2025年广东省江门市新会区教育系统招聘事业编制教师188人笔试历年参考题库附带答案详解-1
- 2024年10月成都市金牛区人民政府西华街道办事处公开招考1名编外人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- (完整版)最新版线束标准
- 操作系统信号量PV操作题若干
- 小学人教版六年级下册第三单元作文:六年级下册语文第三单元作文:我的理想作文800字
- 涵洞水力计算
- JJF(浙)1077-2012 崩解仪校准规范
评论
0/150
提交评论