2024届吉林省长春市德惠市九校高一上数学期末复习检测试题含解析_第1页
2024届吉林省长春市德惠市九校高一上数学期末复习检测试题含解析_第2页
2024届吉林省长春市德惠市九校高一上数学期末复习检测试题含解析_第3页
2024届吉林省长春市德惠市九校高一上数学期末复习检测试题含解析_第4页
2024届吉林省长春市德惠市九校高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春市德惠市九校高一上数学期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能2.在某次测量中得到的样本数据如下:.若样本数据恰好是样本数据都加2后所得数据,则两样本的下列数字特征对应相同的是()A.众数 B.平均数C.标准差 D.中位数3.已知幂函数的图象过点,则该函数的解析式为()A. B.C. D.4.若,则的值是()A. B.C. D.15.在平面直角坐标系中,角与角项点都在坐标原点,始边都与x轴的非负半轴重合,它们的终边关于y轴对称,若,则()A. B.C. D.6.若函数(,且)在区间上单调递增,则A., B.,C., D.,7.若单位向量,满足,则向量,夹角的余弦值为()A. B.C. D.8.已知,,,则a,b,c的大小关系正确的是()A.a>b>c B.b>c>aC.c>b>a D.c>a>b9.已知为两条直线,为两个不同的平面,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则10.已知是定义在上的奇函数,当时,,则当时,的表达式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,其中,,的图象如图所示,求的解析式____12.两平行直线与之间的距离______.13.给出下列命题:①函数是偶函数;②方程是函数的图象的一条对称轴方程;③在锐角中,;④函数的最小正周期为;⑤函数的对称中心是,,其中正确命题的序号是________.14.把物体放在冷空气中冷却,如果物体原来的温度是θ1,空气的温度是θ0℃,那么t后物体的温度θ(单位:)可由公式(k为正常数)求得.若,将55的物体放在15的空气中冷却,则物体冷却到35所需要的时间为___________.15.已知幂函数的图像过点,则___________.16.第24届冬季奥林匹克运动会(TheXXIVOlympicWinterGames),即2022年北京冬季奥运会,计划于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.某大学青年志愿者协会接到组委会志愿者服务邀请,计划从大一至大三青年志愿者中选出24名志愿者,参与北京冬奥会高山滑雪比赛项目的服务工作.已知大一至大三的青年志愿者人数分别为50,40,30,则按分层抽样的方法,在大一青年志愿者中应选派__________人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(且)(1)当时,解不等式;(2)是否存在实数a,使得当时,函数的值域为?若存在,求实数a的值;若不存在,请说明理由18.某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”按学生的课外阅读时间(单位:时)各分为5组[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[30,40)小时内的总人数是多少;(2)从课外阅读时间不足10小时的样本学生中随机抽取3人,求至少有2个初中生的概率;(3)国家规定,初中学生平均每人每天课外阅读时间不少于半个小时.若该校初中学生课外阅读时间小于国家标准,则学校应适当增加课外阅读时间,根据以上抽样调查数据,该校是否需要增加初中学生的课外阅读时间?并说明理由.19.求函数的最小正周期20.已知,(1)若,求a的值;(2)若函数在内有且只有一个零点,求实数a的取值范围21.求下列各式的值(1)(2)(3)(4)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则2、C【解题分析】分别求两个样本的数字特征,再判断选项.【题目详解】A样本数据是:,样本数据是:,A样本的众数是48,B样本的众数是50,故A错;A样本的平均数是,B样本的平均数是,故B错;A样本的标准差B样本的标准差,,故C正确;A样本的中位数是,B样本的中位数是,故D错.故选:C3、C【解题分析】设出幂函数的解析式,根据点求得解析式.【题目详解】设,依题意,所以.故选:C4、D【解题分析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D5、A【解题分析】利用终边相同的角和诱导公式求解.【题目详解】因为角与角的终边关于y轴对称,所以,所以,故选:A6、B【解题分析】函数在区间上单调递增,在区间内不等于,故当时,函数才能递增故选7、A【解题分析】将平方可得,再利用向量夹角公式可求出.【题目详解】,是单位向量,,,,即,即,解得,则向量,夹角的余弦值为.故选:A.8、C【解题分析】根据对数函数的单调性和中间数可得正确的选项.【题目详解】因为,故即,而,故,即,而,故,故即,故,故选:C9、D【解题分析】A中,有可能,故A错误;B中,显然可能与斜交,故B错误;C中,有可能,故C错误;D中,由得,,又所以,故D正确.10、D【解题分析】当,即时,根据当时,,结合函数的奇偶性即可得解.【题目详解】解:函数是定义在上的奇函数,,当时,,当,即时,.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】首先根据函数的最高点与最低点求出A,b,然后由图像求出函数周期从而计算出,再由函数过点求出.【题目详解】,,,解得,则,因为函数过点,所以,,解得因为,所以,.故答案为:【题目点拨】本题考查由图像确定正弦型函数的解析式,第一步通过图像的最值确定A,b的值,第二步通过周期确定的值,第三步通过最值点或者非平衡位置的点以及12、2【解题分析】根据平行线间距离公式可直接求解.【题目详解】直线与平行由平行线间距离公式可得故答案为:2【题目点拨】本题考查了平行线间距离公式的简单应用,属于基础题.13、①②③【解题分析】由诱导公式化简得函数,判断①正确;求出函数的图象的对称轴(),当时,,判断②正确;在锐角中,由化简得到,判断③正确;直接求出函数的最小正周期为,判断④错误;直接求出函数的对称中心是,判断⑤错误.【题目详解】①因为函数,所以函数是偶函数,故①正确;②因为函数,所以函数图象的对称轴(),即(),当时,,故②正确;③在锐角中,,即,所以,故③正确;④函数的最小正周期为,故④错误;⑤令,解得,所以函数的对称中心是,故⑤错误.故答案为:①②③【题目点拨】本题考查三角函数的图象与性质、诱导公式与三角恒等变换,是中档题.14、2【解题分析】将数据,,,代入公式,得到,解指数方程,即得解【题目详解】将,,,代入得,所以,,所以,即.故答案为:215、【解题分析】先设幂函数解析式,再将代入即可求出的解析式,进而求得.【题目详解】设,幂函数的图像过点,,,,故答案为:16、10【解题分析】根据分层抽样原理求出抽取的人数【题目详解】解:根据分层抽样原理知,,所以在大一青年志愿者中应选派10人故答案为:10三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在.【解题分析】(1)根据对数函数的性质可得,求解集即可.(2)由题设可得,进而将问题转化为在上有两个不同的零点,利用二次函数的性质即可判断存在性.【小问1详解】由题设,,∴,可得,∴的解集为.【小问2详解】由题设,,故,∴,而上递增,递减,∴在上递减,故,∴,即是的两个不同的实根,∴在上有两个不同的零点,而开口向上且,显然在上不可能存在两个零点,综上,不存在实数a使题设条件成立.【题目点拨】关键点点睛:第二问,根据对数函数的性质易得,并将问题转化为二次函数在上有两个不同实根零点判断参数的存在性.18、(1)720人(2)(3)需要增加,理由见解析【解题分析】(1)由分层抽样的特点可分别求得抽取的初中生、高中生人数,由频率分布直方图的性质可知初中生、高中生课外阅读时间在,小时内的频率,然后由频数样本容量频率可分别得初中生、高中生课外阅读时间在,小时内的样本学生数,最后将两者相加即可(2)记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,由频数样本容量频率组距频率可分别得初中生、高中生中,阅读时间不足10个小时的学生人数,然后用列举法表示出随机抽取3人的所有可能结果以及事件的结果,从而得(3)同一组中的数据用该组区间中点值作为代表来计算样本中的所有初中生平均每天阅读时间,并与30小时比较大小,若小于30小时,则需要增加,否则不需要增加【小问1详解】由分层抽样知,抽取的初中生有人,高中生有人初中生中,课外阅读时间在,小时内的频率为:,学生人数为人高中生中,课外阅读时间在,小时内的频率为:,学生人数约有人,全校学生中课外阅读时间在,小时内学生总人数为人【小问2详解】记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,初中生中,阅读时间不足10个小时的学生人数为人,高中生中,阅读时间不足10个小时的学生人数为人记这3名初中生为,,,这2名高中生为,,则从阅读时间不足10个小时的样本学生中随机抽取3人,所有可能结果共有10种,即,,,,,,,,,,而事件结果有7种,它们是:,,,,,,,至少抽到2名初中生的概率为【小问3详解】样本中的所有初中生平均每天阅读时间为:(小时),而(小时),,该校需要增加初中学生课外阅读时间19、【解题分析】利用三角函数恒等变换的应用化简函数解析式为,利用余弦函数的周期公式即可计算得解【题目详解】先证明出,.因为,同理可证.,,因此,原函数的最小正周期【题目点拨】关键点点睛:本题考查余弦型函数最小正周期的求解,求解的关键就是利用三角恒等变换思想化简函数解析式,本题中用到了积化和差公式,,在解题时应先给与证明.20、(1)(2)【解题分析】(1)由即可列方程求出a的值;(2)化简f(x)解析式,利用进行换元,将问题转化为在内有且只有一个零点,在上无零点进行讨论.【小问1详解】由得,即,,解得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论