广东省东莞中学2024届高一上数学期末质量跟踪监视试题含解析_第1页
广东省东莞中学2024届高一上数学期末质量跟踪监视试题含解析_第2页
广东省东莞中学2024届高一上数学期末质量跟踪监视试题含解析_第3页
广东省东莞中学2024届高一上数学期末质量跟踪监视试题含解析_第4页
广东省东莞中学2024届高一上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省东莞中学2024届高一上数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则()A.0或1 B.C. D.或2.满足不等式成立的的取值集合为()A.B.C.D.3.下列四个函数中,以为最小正周期,且在区间上为减函数的是A. B.C. D.4.设a>0,b>0,化简的结果是()A. B.C. D.-3a5.已知,若,则A.1 B.2C.3 D.46.函数的一条对称轴是()A. B.C. D.7.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.8.已知向量,,且与的夹角为锐角,则的取值范围是A. B.C. D.9.以点为圆心,且与轴相切的圆的标准方程为()A. B.C. D.10.已知函数的值域为R,则a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线关于定点对称的直线方程是_________12.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.13.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.14.已知集合,,则=______15.若函数在区间内有最值,则的取值范围为_______16.函数的最小值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知幂函数的图象关于轴对称,集合.(1)求的值;(2)当时,的值域为集合,若是成立的充分不必要条件,求实数的取值范围.18.(1)计算:;(2)计算:19.某商品上市天内每件的销售价格(元)与时间(天)函数的关系是,该商品的日销售量(件)与时间(天)的函数关系是.(1)求该商品上市第天的日销售金额;(2)求这个商品的日销售金额的最大值.20.一家货物公司计划在距离车站不超过8千米的范围内征地建造仓库,经过市场调查了解到下列信息:征地费用(单位:万元)与仓库到车站的距离(单位:千米)的关系为.为了交通方便,仓库与车站之间还要修一条道路,修路费用(单位:万元)与仓库到车站的距离(单位:千米)成正比.若仓库到车站的距离为3千米时,修路费用为18万元.设为征地与修路两项费用之和.(1)求的解析式;(2)仓库应建在离车站多远处,可使总费用最小,并求最小值21.已知集合,,.(1)求,(2)若,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【题目详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.2、A【解题分析】先求出一个周期内不等式的解集,再结合余弦函数的周期性即可求解.【题目详解】解:由得:当时,因为的周期为所以不等式的解集为故选:A.3、A【解题分析】最小正周期,且在区间上为减函数,适合;最小正周期为,不适合;最小正周期为,在区间上不单调,不适合;最小正周期为,在区间上为增函数,不适合.故选A4、D【解题分析】由分数指数幂的运算性质可得结果.【题目详解】因为,,所以.故选:D.5、A【解题分析】构造函数,则为奇函数,根据可求得,进而可得到【题目详解】令,则为奇函数,且,由题意得,∴,∴,∴.故选A【题目点拨】本题考查运用奇函数的性质求函数值,解题的关键是根据题意构造函数,体现了转化思想在解题中的应用,同时也考查观察、构造的能力,属于基础题6、B【解题分析】由余弦函数的对称轴为,应用整体代入法求得对称轴为,即可判断各项的对称轴方程是否正确.【题目详解】由余弦函数性质,有,即,∴当时,有.故选:B7、B【解题分析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可8、B【解题分析】因为与夹角为锐角,所以cos<,>>0,且与不共线,由得,k>-2且,故选B考点:本题主要考查平面向量的坐标运算,向量夹角公式点评:基础题,由夹角为锐角,可得到k得到不等式,应注意夹角为0°时,夹角的余弦值也大于0.9、C【解题分析】根据题中条件,得到圆的半径,进而可得圆的方程.【题目详解】以点为圆心且与轴相切的圆的半径为,故圆的标准方程是.故选:C.10、D【解题分析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【题目详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先求出原直线上一个点关于定点的对称点,然后用对称后的直线与原直线平行【题目详解】在直线上取点,点关于的对称点为过与原直线平行的直线方程为,即为对称后的直线故答案为:12、②③④【解题分析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【题目详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【题目点拨】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键13、【解题分析】由图可知,14、{-1,1,2};【解题分析】=={-1,1,2}15、【解题分析】当函数取得最值时有,由此求得的值,根据列不等式组,解不等式组求得的取值范围(含有),对赋值求得的具体范围.【题目详解】由于函数取最值时,,,即,又因为在区间内有最值.所以时,有解,所以,即,由得,当时,,当时,又,,所以的范围为.【题目点拨】本小题主要考查三角函数最值的求法,考查不等式的解法,考查赋值法,属于中档题.16、##【解题分析】用辅助角公式将函数整理成的形式,即可求出最小值【题目详解】,,所以最小值为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据幂函数的定义可得,求出的值,再检验即可得出答案.(2)先求出函数的值域,即得出集合,然后由题意知,根据集合的包含关系得到不等式组,从而求出答案.【小问1详解】由幂函数定义,知,解得或,当时,的图象不关于轴对称,舍去,当时,的图象关于轴对称,因此.【小问2详解】当时,的值域为,则集合,由题意知,得,解得.18、(1);(2).【解题分析】(1)由根式化为分数指数幂,再由幂的运算法则计算(2)利用对数的换底公式和运算法则计算【题目详解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=319、(1)750元;(2)元.【解题分析】(1)根据题目提供的函数关系式分别算出该商品上市第20天的销售价格和日销售量即可;(2)设日销售金额为元,则,分别讨论当时以及当时的情况即可【题目详解】解:(1)该商品上市第天的销售价格是元,日销售量为件.所以该商品上市第天的日销售金额是元.(2)设日销售金额为(元),则.当,时,取得最大值为(元),当,时,取得最大值为(元).所以第天时,这个商品的日销售金额最大,最大值为(元).20、(1),;(2)当仓库建在离车站5千米时,总费用最少,最小值为70万元.【解题分析】(1)先设,依题意求参数,即得的解析式;(2)先整理函数,再利用基本不等式求最值,即得函数最小值及取最小值的条件.【题目详解】解:(1)根据题意,设修路

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论