江西省上高县第二中学2024届数学高一上期末调研试题含解析_第1页
江西省上高县第二中学2024届数学高一上期末调研试题含解析_第2页
江西省上高县第二中学2024届数学高一上期末调研试题含解析_第3页
江西省上高县第二中学2024届数学高一上期末调研试题含解析_第4页
江西省上高县第二中学2024届数学高一上期末调研试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上高县第二中学2024届数学高一上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.2.已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为()A.3cm B.6cmC.9cm D.12cm3.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1154.若a<b<0,则下列不等式中成立的是()A.-a<-bC.a>-b D.5.设θ为锐角,,则cosθ=()A. B.C. D.6.函数的部分图象如图所示,则可能是()A. B.C. D.7.已知集合,,则等于()A. B.C. D.8.计算器是如何计算,,,,等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如,,,其中.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的和的值也就越精确.运用上述思想,可得到的近似值为()A.0.50 B.0.52C.0.54 D.0.569.已知函数,若,,,则,,的大小关系为A. B.C. D.10.已知等比数列满足,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.点关于直线的对称点的坐标为______.12.设偶函数的定义域为,函数在上为单调函数,则满足的所有的取值集合为______13.已知幂函数在上单调递减,则___________.14.已知函数,则函数的值域为______15.已知函数是定义在的偶函数,且在区间上单调递减,若实数满足,则实数的取值范围是__________16.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求;(2)若,求.18.已知函数,其中m为常数,且(1)求m的值;(2)用定义法证明在R上是减函数19.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?20.设函数是定义域为的任意函数.(1)求证:函数是奇函数,是偶函数;(2)如果,试求(1)中的和的表达式.21.已知函数,其中.(1)求函数的定义域;(2)若函数的最大值为2.求a的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据直线的斜率与倾斜角的关系即可求解.【题目详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.2、C【解题分析】利用扇形弧长公式进行求解.【题目详解】设扇形弧长为lcm,半径为rcm,则,即且,解得:(cm),故此扇形的弧长为9cm.故选:C3、D【解题分析】根据第p百分位数的定义直接计算,再判断作答.【题目详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D4、C【解题分析】根据函数y=x的单调性,即可判断选项A是否正确;根据函数y=1x在-∞,0上单调递减,即可判断选项B是否正确;在根据不等式的性质即可判断选项【题目详解】因为a<b<0,所以-a>-b>0,又函数y=x在0,+∞上单调递增,所以因为a<b<0,函数y=1x在-∞,0上单调递减,所以因为a<b<0,所以-a>-b>0,又a=-a,所以a>-b,故因为a<b<0,两边同时除以b,可知ab>1,故D故选:C.5、D【解题分析】为锐角,故选6、A【解题分析】先根据函数图象,求出和,进而求出,代入特殊点坐标,求出,,得到正确答案.【题目详解】由图象可知:,且,所以,不妨设:,将代入得:,即,,解得:,,当时,,故A正确,其他选项均不合要求.故选:A7、A【解题分析】先解不等式,再由交集的定义求解即可【题目详解】由题,因为,所以,即,所以,故选:A【题目点拨】本题考查集合的交集运算,考查利用指数函数单调性解不等式8、C【解题分析】根据新定义,直接计算取近似值即可.【题目详解】由题意,故选:C9、C【解题分析】根据函数解析式先判断函数的单调性和奇偶性,然后根据指数和对数的运算法则进行化简即可【题目详解】∵f(x)=x3,∴函数f(x)是奇函数,且函数为增函数,a=﹣f(log3)=﹣f(﹣log310)=f(log310),则2<log39.1<log310,20.9<2,即20.9<log39.1<log310,则f(209)<f(log39.1)<f(log310),即c<b<a,故选C【题目点拨】本题主要考查函数值的大小的比较,根据函数解析式判断函数的单调性和奇偶性是解决本题的关键10、C【解题分析】由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】设点关于直线的对称点为,由垂直的斜率关系,和线段的中点在直线上列出方程组即可求解.【题目详解】设点关于直线的对称点为,由对称性知,直线与线段垂直,所以,所以,又线段的中点在直线上,即,所以,由,所以点关于直线的对称点的坐标为:.故答案为:.12、【解题分析】∵,又函数在上为单调函数∴=∴,或∴∴满足的所有的取值集合为故答案为13、【解题分析】由系数为1解出的值,再由单调性确定结论【题目详解】由题意,解得或,若,则函数为,在上递增,不合题意若,则函数为,满足题意故答案为:14、【解题分析】先求的的单调性和值域,然后代入中求得函数的值域.【题目详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【题目点拨】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.15、【解题分析】先利用偶函数的性质将不等式化简为,再利用函数在上的单调性即可转化为,然后求得的范围.【题目详解】因为为R上偶函数,则,所以,所以,即,因为为上的减函数,,所以,解得,所以,的范围为.【题目点拨】1.函数值不等式的求法:(1)利用函数的奇偶性、特殊点函数值等性质将函数值不等式转化为与大小比较的形式:;(2)利用函数单调性将转化为自变量大小比较的形式,再求解不等式即可.

偶函数的性质:;奇函数性质:;

若在D上为增函数,对于任意,都有;若在D上为减函数,对于任意,都有.16、【解题分析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用诱导公式可得答案;(2)利用诱导公式得到,再根据的范围和平方关系可得答案.小问1详解】.【小问2详解】,若,则,所以.18、(1)1;(2)证明见解析.【解题分析】(1)将代入函数解析式直接计算即可;(2)利用定义法直接证明函数的单调性即可.【小问1详解】由题意得,,解得;【小问2详解】由(1)知,,所以R,R,且,则,因为,所以,所以,故,即,所以函数在R上是减函数.19、(1)(2)4万件【解题分析】(1)由题意,总成本,由即可得利润函数解析式;(2)根据反比例函数及二次函数的单调性,求出分段函数的最大值即可求解.【小问1详解】解:由题意,总成本,因为销售收入满足,所以利润函数;小问2详解】解:当时,因为函数单调递减,所以万元;当时,函数,所以当时,有最大值为13(万元).所以当工厂生产4万件产品时,可使盈利最多为13万元.20、(1)是奇函数,是偶函数.(2)【解题分析】(1)计算,可得证(2)将f(x)代入(1)中表达式化简即可求得试题解析:(1)∵的定义域为,∴和的定义域都为.∵,∴.∴是奇函数,∵,∴,∴是偶函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论