2024届上海市金山区上海交大南洋中学高一上数学期末考试试题含解析_第1页
2024届上海市金山区上海交大南洋中学高一上数学期末考试试题含解析_第2页
2024届上海市金山区上海交大南洋中学高一上数学期末考试试题含解析_第3页
2024届上海市金山区上海交大南洋中学高一上数学期末考试试题含解析_第4页
2024届上海市金山区上海交大南洋中学高一上数学期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市金山区上海交大南洋中学高一上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义域为R的偶函数,且在上单调递减,则不等式的解集为A. B.C. D.2.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.3.设集合则().A. B.C. D.4.定义:对于一个定义域为的函数,若存在两条距离为的直线和,使得时,恒有,则称在内有一个宽度为的通道.下列函数:①;②;③;④.其中有一个宽度为2的通道的函数的序号为A.①② B.②③C.②④ D.②③④5.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.6.当x越来越大时,下列函数中增长速度最快的是()A. B.C. D.7.为了得到函数的图象,只需将函数的图象上所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位8.下列说法正确的是A.截距相等的直线都可以用方程表示B.方程不能表示平行轴的直线C.经过点,倾斜角为直线方程为D.经过两点,的直线方程为9.已知直线的方程为,则该直线的倾斜角为A. B.C. D.10.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某商厦去年1月份的营业额为100万元.如果该商厦营业额的月增长率为1%,则商厦的月营业额首次突破110万元是在去年的___________月份.12.已知函数的图象过原点,且无限接近直线,但又不与该直线相交,则______13.已知关于的不等式的解集为,其中,则的最小值是___________.14.______________15.函数的最小值为__________16.已知函数,则=____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.18.求解下列问题(1)化简(其中各字母均为正数):;(2)化简并求值:19.计算:(1);(2)20.筒车是我国古代发哪的一种水利灌溉工具,因其经济环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中描绘了筒车的工作原理.如图1是一个半径为R(单位:米),有24个盛水筒的筒车,按逆时针方向匀速旋转,转一周需要120秒,为了研究某个盛水筒P离水面高度h(单位,米)与时间t(单位:秒)的变化关系,建立如图2所示的平面直角坐标系xOy.已知时P的初始位置为点(此时P装满水).(1)P从出发到开始倒水入槽需要用时40秒,求此刻P距离水面的高度(结果精确到0.1);(2)记与P相邻的下一个盛水筒为Q,在简车旋转一周的过程中,求P与Q距离水面高度差的最大值(结果精确到0.1)参考数据:,,,21.已知函数(,且).(1)若,试比较与的大小,并说明理由;(2)若,且,,三点在函数的图像上,记的面积为,求的表达式,并求的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】本题首先可以根据函数是定义域为R的偶函数判断出函数的对称轴,然后通过在上单调递减判断出函数在上的单调性,最后根据即可列出不等式并解出答案【题目详解】因为函数是定义域为R的偶函数,所以函数关于轴对称,即函数关于对称,因为函数在上单调递减,所以函数在上单调递增,因为,所以到对称轴的距离小于到对称轴的距离,即,,化简可得,,解得,故选D【题目点拨】本题考查了函数的单调性和奇偶性的相关性质,若函数是偶函数,则函数关于轴对称且轴左右两侧单调性相反,考查推理能力与计算能力,考查函数方程思想与化归思想,是中档题2、C【解题分析】易知函数在R上递增,由求解.【题目详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C3、D【解题分析】利用求集合交集的方法求解.【题目详解】因为所以.故选:D.【题目点拨】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.4、D【解题分析】②③可由作图所得,④作图可知有一个宽度为1的通道,由定义可知比1大的通道都存在.5、D【解题分析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【题目详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D6、B【解题分析】根据函数的特点即可判断出增长速度.【题目详解】因为指数函数是几何级数增长,当x越来越大时,增长速度最快.故选:B7、A【解题分析】化简函数的解析式,根据函数图象变换的知识确定正确选项.【题目详解】,将函数的图象上所有的点向左平移个单位,得到.故选:A8、D【解题分析】A错误,比如过原点的直线,横纵截距均为0,这时就不能有选项中的式子表示;B当m=0时,表示的就是和y轴平行的直线,故选项不对C不正确,当直线的倾斜角为90度时,正切值无意义,因此不能表示.故不正确D根据直线的两点式得到斜率为,再代入一个点得到方程为:故答案为D9、B【解题分析】直线的斜率,其倾斜角为.考点:直线的倾斜角.10、D【解题分析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【题目详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、11【解题分析】根据指数函数模型求解【题目详解】设第月首次突破110万元,则,,,因此11月份首次突破110万元故答案为:1112、##0.75【解题分析】根据条件求出,,再代入即可求解.【题目详解】因为的图象过原点,所以,即.又因为的图象无限接近直线,但又不与该直线相交,所以,,所以,所以故答案为:13、【解题分析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【题目详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:14、【解题分析】利用指数的运算法则和对数的运算法则即求.【题目详解】原式.故答案为:.15、【解题分析】所以,当,即时,取得最小值.所以答案应填:.考点:1、对数的运算;2、二次函数的最值.16、【解题分析】由函数解析式,先求得,再求得代入即得解.【题目详解】函数,则==,故答案为.【题目点拨】本题考查函数值的求法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),图象见解析;(2)(3)【解题分析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得的单调递增区间.(3)化简方程,利用换元法,结合一元二次方程根的分布求得的取值范围.【小问1详解】.所以,将该函数的图象向左平移个单位后得到函数,则,该函数的图象关于轴对称,可知该函数为偶函数,故,,解得,.因为,所以得到.所以函数,列表:000作图如下:【小问2详解】由函数,令,,解得,,所以函数的单调递增区间为【小问3详解】由(1)得到,化简得,令,,则.关于的方程,即,解得,.当时,由,可得;要使原方程在上有两个不相等的实数根,则,解得.故实数的取值范围为.18、(1)(2)【解题分析】(1)结合指数运算求得正确答案.(2)结合对数运算求得正确答案.【小问1详解】原式【小问2详解】原式19、(1);(2).【解题分析】(1)根据指数幂的运算法则,以及根式与指数幂的互化公式,直接计算,即可得出结果;(2)根据对数的运算法则,直接计算,即可得出结果.【题目详解】(1)原式=(2)原式==20、(1)m(2)m【解题分析】(1)根据题意P从出发到开始倒水入槽用时40秒,可知线段OA按逆时针方向旋转了,由,可求圆的半径,由题意可知以OA为终边的角为,由此即可求出P距离水面的高度;(2)由题意可知P转动的角速度为rad/s,易知P开始转动t秒后距离水面的高度的解析式,设P,Q两个盛水筒分别用点B,C表示,易知,点C相对于点B始终落后rad,求出Q距离水面的高度,可得则P,Q距离水面的高度差,再根据三角函数的性质,即可求出结果.【小问1详解】解:由于筒车转一周需要120秒,所以P从出发到开始倒水入槽的40秒,线段OA按逆时针方向旋转了,因为A点坐标为,得,以OA为终边的角为,所以P距离水面的高度m【小问2详解】解:由于筒车转一周需要120秒,可知P转动的角速度为rad/s,又以OA为终边的角为,则P开始转动t秒后距离水面的高度,如图,P,Q两个盛水筒分别用点B,C表示,则,点C相对于点B始终落后rad,此时Q距离水面的高度则P,Q距离水面的高度差,利用,可得当或,即或时,最大值为所以,筒车旋转一周的过程中,P与Q距

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论