江苏省苏州市立达中学2024届高一数学第一学期期末统考模拟试题含解析_第1页
江苏省苏州市立达中学2024届高一数学第一学期期末统考模拟试题含解析_第2页
江苏省苏州市立达中学2024届高一数学第一学期期末统考模拟试题含解析_第3页
江苏省苏州市立达中学2024届高一数学第一学期期末统考模拟试题含解析_第4页
江苏省苏州市立达中学2024届高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市立达中学2024届高一数学第一学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(其中为自然对数的底数)的图象大致为()A. B.C. D.2.设,,若,则的最小值为()A. B.6C. D.3.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.4.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.5.现对有如下观测数据345671615131417记本次测试中,两组数据的平均成绩分别为,两班学生成绩的方差分别为,,则()A., B.,C., D.,6.圆的半径为,该圆上长为的弧所对的圆心角是A. B.C. D.7.设是定义在上的奇函数,且当时,,则()A. B.C. D.8.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg3≈048)A.1033 B.1053C.1073 D.10939.将函数的周期扩大到原来的2倍,再将函数图象左移,得到图象对应解析式是()A. B.C. D.10.棱长分别为1、、2的长方体的8个顶点都在球的表面上,则球的体积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若扇形的面积为9,圆心角为2弧度,则该扇形的弧长为______12.在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:①CG//平面ADE;②该几何体的上底面的周长为;③该几何体的的体积为;④三棱锥F-ABC的外接球的表面积为其中所有正确结论的序号是____________13.已知函数满足,则________.14.已知指数函数(且)在区间上的最大值是最小值的2倍,则______15.若实数x,y满足,则的最小值为___________16.函数是幂函数且为偶函数,则m的值为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上奇函数,已知当时,求实数a的值;求在上的解析式;若存在时,使不等式成立,求实数m的取值范围18.已知函数,.(1)用函数单调性的定义证明:是增函数;(2)若,则当为何值时,取得最小值?并求出其最小值.19.已知(1)若函数和函数的图象关于原点对称,求函数的解析式(2)若在上是增函数,求实数的取值范围20.已知点P是圆C:(x-3)2+y2=4上的动点,点A(-3,0),M是线段AP的中点(1)求点M的轨迹方程;(2)若点M的轨迹与直线l:2x-y+n=0交于E,F两点,若直角坐标系的原点在以线段为直径的圆上,求n的值21.已知圆过,,且圆心在直线上(1)求此圆的方程(2)求与直线垂直且与圆相切的直线方程(3)若点为圆上任意点,求的面积的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由为偶函数,排除选项B、D,又,排除选项C,从而即可得答案.【题目详解】解:令,因为,且定义域为,所以为偶函数,所以排除选项B、D;又,所以排除选项C;故选:A.2、C【解题分析】由已知可得,将代数式与相乘,展开后利用基本不等式可求得所求代数式的最小值.【题目详解】,,,由可得,所以,,当且仅当时,等号成立.因此,的最小值为.故选:C.【题目点拨】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3、B【解题分析】根据偶函数的性质和单调性解函数不等式【题目详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B4、C【解题分析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【题目详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C5、C【解题分析】利用平均数以及方差的计算公式即可求解.【题目详解】,,,,故,故选:C【题目点拨】本题考查了平均数与方差,需熟记公式,属于基础题.6、B【解题分析】由弧长公式可得:,解得.考点:弧度制.7、D【解题分析】根据奇函数的性质求函数值即可.【题目详解】故选:D8、D【解题分析】设,两边取对数,,所以,即最接近,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令,并想到两边同时取对数进行求解,对数运算公式包含,,.9、D【解题分析】直接利用函数图象的与平移变换求出函数图象对应解析式【题目详解】解:将函数y=5sin(﹣3x)的周期扩大为原来的2倍,得到函数y=5sin(x),再将函数图象左移,得到函数y=5sin[(x)]=5sin()=5sin()故选D【题目点拨】本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题.10、A【解题分析】球的直径为长方体的体对角线,又体对角线的长度为,故体积为,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解题分析】先由已知求出半径,从而可求出弧长【题目详解】设扇形所在圆的半径为,因为扇形的面积为9,圆心角为2弧度,所以,得,所以该扇形的弧长为,故答案为:612、①③④【解题分析】由面面平行的性质判断①;由题设知两段圆弧的长度之和为,即可得上底周长判断②;利用正方体体积及圆锥体积的求法求几何体体积判断③;首先确定外接球球心位置,进而求出球体的半径,即可得F-ABC的外接球的表面积判断④.【题目详解】因为面面,面,所以CG//平面,即CG//平面ADE,①正确;依题意知,弧EF与弧HG均为圆弧,且这两段圆弧的长度之和为,所以该几何体的上底面的周长为,该几何体的体积为8-,②错误,③正确;设M,N分别为下底面、上底面的中心,则三棱锥F-ABC的外接球的球心O在MN上设OM=h,则,解得,从而球O的表面积为,④正确.故答案为:①③④13、6【解题分析】由得出方程组,求出函数解析式即可.【题目详解】因为函数满足,所以,解之得,所以,所以.【题目点拨】本题主要考查求函数的值,属于基础题型.14、或2【解题分析】先讨论范围确定的单调性,再分别进行求解.【题目详解】①当时,,得;②当时,,得,故或2故答案为:或2.15、【解题分析】由对数的运算性质可求出的值,再由基本不等式计算即可得答案【题目详解】由题意,得:,则(当且仅当时,取等号)故答案为:16、【解题分析】由函数是幂函数,则,解出的值,再验证函数是否为偶函数,得出答案.【题目详解】由函数是幂函数,则,得或当时,函数不是偶函数,所以舍去.当时,函数是偶函数,满足条件.故答案为:【题目点拨】本题考查幂函数的概念和幂函数的奇偶性,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果【题目详解】根据题意,是定义在上的奇函数,则,得经检验满足题意;故;根据题意,当时,,当时,,又是奇函数,则综上,当时,;根据题意,若存在,使得成立,即在有解,即在有解又由,则在有解设,分析可得上单调递减,又由时,,故即实数m的取值范围是【题目点拨】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题18、证明详见解析;(2)时,的最小值是.【解题分析】(1)根据函数单调性定义法证明,定义域内任取,且,在作差,变形后判断符号,证明函数的单调性;(2)首先根据函数的定义域求的范围,再根据基本不等式求最小值.【题目详解】(1)证明:在区间任取,设,,,,,即,所以函数在是增函数;(2),的定义域是,,设,时,,当时,,当,即时,等号成立,即时,函数取得最小值4.【题目点拨】易错点睛:本题的易错点是第二问容易忽略函数的定义域,换元时,也要注意中间变量的取值范围.19、(1)(2)【解题分析】(1)化简f(x)解析式,设函数的图象上任一点,,它关于原点的对称点为,其中,,利用点在函数的图象上,将其坐标代入的表达式即可得g(x)解析式;(2)可令,将在转化为:,对的系数分类讨论,利用一次函数与二次函数的性质讨论解决即可【小问1详解】设函数的图象上任一点,关于原点的对称点为,则,,由点在函数的图象上,,即,函数的解析式为;【小问2详解】由,设,由,且t在上单调递增,根据复合函数单调性规则,要使h(x)在上为增函数,则在上为增函数,①当时,在,上是增函数满足条件,;②当时,m(t)对称轴方程为直线,(i)当-(1+λ)>0时,,应有t=,解得,(ii当-(1+λ)<0时,,应有,解得;综上所述,20、(1);(2)【解题分析】(1)设,,,利用为中点,表示出,代入圆方程即可;(2)根据轨迹以及结合韦达定理、平面向量的数量积,列出关于的方程即可【题目详解】(1)设为所求轨迹上的任意一点,点P为,则.①又是线段AP的中点,,则,代入①式得(2)联立,消去y得由得.②设,,则.③由可得,,,展开得由③式可得,化简得.④根据②④得21、(1)(2)或(3)【解题分析】(1)一般利用待定系数法,先求出圆心的坐标,再求出圆的半径,即得圆的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论