北京市海淀区北方交大附中2024届数学高一上期末统考试题含解析_第1页
北京市海淀区北方交大附中2024届数学高一上期末统考试题含解析_第2页
北京市海淀区北方交大附中2024届数学高一上期末统考试题含解析_第3页
北京市海淀区北方交大附中2024届数学高一上期末统考试题含解析_第4页
北京市海淀区北方交大附中2024届数学高一上期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市海淀区北方交大附中2024届数学高一上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为A B.C. D.2.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.3.函数的单调递减区间为A. B.C. D.4.定义在R上的偶函数满足:对任意的,有,且,则不等式的解集是()A. B.C. D.5.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位6.圆与圆的位置关系为()A.相离 B.相交C.外切 D.内切7.函数部分图象如图所示,则下列结论错误的是()A.频率为 B.周期为C.振幅为2 D.初相为8.下列说法中正确的是()A.如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B.平面内的三个顶点到平面的距离相等,则与平行C.,,则D.,,,则9.已知函数是定义域为R的偶函数,且在上单调递减,则不等式的解集为A. B.C. D.10.已知函数,且,则A.3 B.C.9 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______12.计算:________.13.已知向量、满足:,,,则_________.14.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________15.已知,那么的值为___________.16.已知直线经过点,且与直线平行,则直线的方程为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,设角的对边分别为,已知.(1)求角的大小;(2)若,求周长的取值范围.18.已知与都是锐角,且,(1)求的值;(2)求证:19.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分均值和方差;(2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率20.已知,(1)求的值;(2)求的值.21.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故产生原因的一个重要因素.在一个限速为40km/h的弯道上,现场勘查测得一辆事故汽车的刹车距离略超过10米.已知这种型号的汽车的刹车距离(单位:m)与车速(单位:km/h)之间满足关系式,其中为常数.试验测得如下数据:车速km/h20100刹车距离m355(1)求的值;(2)请你判断这辆事故汽车是否超速,并说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用弧长公式、扇形的面积计算公式即可得出【题目详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【题目点拨】本题考查了弧长公式、扇形的面积计算公式,属于基础题2、C【解题分析】运用零点的定义和一元二次方程的解法可得【题目详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【题目点拨】本题考查零点的定义,一元二次方程的解法3、C【解题分析】由幂函数的性质知,函数的图像以原点为对称中心,在均是减函数故答案为C4、C【解题分析】依题意可得在上单调递减,根据偶函数的性质可得在上单调递增,再根据,即可得到的大致图像,结合图像分类讨论,即可求出不等式的解集;【题目详解】解:因为函数满足对任意的,有,即在上单调递减,又是定义在R上的偶函数,所以在上单调递增,又,所以,函数的大致图像可如下所示:所以当时,当或时,则不等式等价于或,解得或,即原不等式的解集为;故选:C5、D【解题分析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)6、A【解题分析】通过圆的标准方程,可得圆心和半径,通过圆心距与半径的关系,可得两圆的关系.【题目详解】圆,圆心,半径为;,圆心,半径为;两圆圆心距,所以相离.故选:A.7、A【解题分析】根据图象可得、,然后利用求出即可.【题目详解】由图可知,C正确;,则,,B正确;,A错误;因为,则,即,又,则,D正确故选:A8、D【解题分析】根据线面关系,逐一判断每个选项即可.【题目详解】解:对于A选项,如果一条直线与一个平面平行,那么这条直线与平面内无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图,,,,分别为正方体中所在棱的中点,平面设为平面,易知正方体的三个顶点,,到平面的距离相等,但所在平面与相交,故错误;对于选项C,可能在平面内,故错误;对于选项D,正确.故选:D.9、D【解题分析】本题首先可以根据函数是定义域为R的偶函数判断出函数的对称轴,然后通过在上单调递减判断出函数在上的单调性,最后根据即可列出不等式并解出答案【题目详解】因为函数是定义域为R的偶函数,所以函数关于轴对称,即函数关于对称,因为函数在上单调递减,所以函数在上单调递增,因为,所以到对称轴的距离小于到对称轴的距离,即,,化简可得,,解得,故选D【题目点拨】本题考查了函数的单调性和奇偶性的相关性质,若函数是偶函数,则函数关于轴对称且轴左右两侧单调性相反,考查推理能力与计算能力,考查函数方程思想与化归思想,是中档题10、C【解题分析】利用函数的奇偶性以及已知条件转化求解即可【题目详解】函数g(x)=ax3+btanx是奇函数,且,因为函数f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,则=﹣g()+6=3+6=9故选C【题目点拨】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.已知函数解析式求函数值,可以直接将变量直接代入解析式从而得到函数值,直接代入较为繁琐的题目,可以考虑函数的奇偶性的应用,利用部分具有奇偶性的特点进行求解,就如这个题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【题目详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【题目点拨】本题考查方程根的个数,数形结合是解决问题的关键,属基础题12、【解题分析】由,利用正弦的和角公式求解即可【题目详解】原式,故答案为:【题目点拨】本题考查正弦的和角公式的应用,考查三角函数的化简问题13、.【解题分析】将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【题目详解】,,,因此,,故答案为.【题目点拨】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.14、【解题分析】根据所给弦长,圆心角求出所在圆的半径,利用扇形面积公式求解.【题目详解】由弦长为2,圆心角为2可知扇形所在圆的半径,故,故答案为:15、##0.8【解题分析】由诱导公式直接可得.详解】.故答案为:16、【解题分析】设与直线平行的直线,将点代入得.即所求方程为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)由三角函数的平方关系及余弦定理即可得出(2)利用正弦定理、两角和差的正弦公式、三角函数的单调性转化为三角函数求值域即可得出.【题目详解】(1)由题意知,即,由正弦定理得由余弦定理得,又.(2),则的周长.,,周长的取值范围是.【题目点拨】本题主要考查了三角函数的平方关系,正余弦定理,两角和差的正弦公式,三角函数的单调性,属于中档题.18、(1)(2)见解析【解题分析】(1)先确定的取值范围,再利用同角三角函数的平方关系,求得和的值,然后根据,并结合两角和的正弦公式,得解;(2)由,,结合两角和差的正弦公式,分别求出和的值,即可得证【小问1详解】解:因为与都是锐角,所以,,又,,所以,,所以,,所以;【小问2详解】证明:因为,所以①,因为,所以②,①②得,,①②得,,故19、(1)15,32.25(2)【解题分析】(1)由已知中的茎叶图,代入平均数和方差公式,可得得答案;(2)根据古典概型计算即可求解.【题目详解】(1)这8场比赛队员甲得分为:7,8,10,15,17,19,21,23故平均数为:,方差:.(2)从甲比赛得分在分以下的场比赛中随机抽取场,共有15中种不同的取法,其中抽到场都不超过均值的为得分共6种,由古典概型概率公式得.20、(1)(2)【解题分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论