2024届湖北省孝感市部分重点学校数学高一上期末质量跟踪监视试题含解析_第1页
2024届湖北省孝感市部分重点学校数学高一上期末质量跟踪监视试题含解析_第2页
2024届湖北省孝感市部分重点学校数学高一上期末质量跟踪监视试题含解析_第3页
2024届湖北省孝感市部分重点学校数学高一上期末质量跟踪监视试题含解析_第4页
2024届湖北省孝感市部分重点学校数学高一上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省孝感市部分重点学校数学高一上期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边经过点,且,则()A. B.C. D.2.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米3.若角的终边上一点,则的值为()A. B.C. D.4.已知为三角形内角,且,若,则关于的形状的判断,正确的是A.直角三角形 B.锐角三角形C.钝角三角形 D.三种形状都有可能5.函数,设,则有A. B.C. D.6.已知函数,则下列是函数图象的对称中心的坐标的是()A. B.C. D.7.的图像是端点为且分别过和两点的两条射线,如图所示,则的解集为A.B.C.D.8.设,,则()A. B.C. D.9.设,且,则()A. B.C. D.10.已知角的终边上有一点的坐标是,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式tanx+12.设函数且是定义域为的奇函数;(1)若,判断的单调性并求不等式的解集;(2)若,且,求在上的最小值13.已知,,则_____;_____14.计算:__________.15.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.16.求过(2,3)点,且与(x-3)2+y2=1相切的直线方程为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合,或求:(1);(2).18.已知函数(1)若的定义域为R,求a的取值范围;19.如图,在四棱锥中,,是以为斜边的等腰直角三角形,且.(1)证明:平面平面.(2)若四棱锥的体积为4,求四面体的表面积.20.已知函数(1)若是偶函数,求a的值;21.计算:(1)(2)(3)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用三角函数的定义可求得的值,再利用三角函数的定义可求得的值.【题目详解】由三角函数的定义可得,则,解得,因此,.故选:A.2、D【解题分析】根据题意,建立水费与用水量的函数关系式,即可求解.【题目详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D3、B【解题分析】由三角函数的定义即可得到结果.【题目详解】∵角的终边上一点,∴,∴,故选:B【题目点拨】本题考查三角函数的定义,考查诱导公式及特殊角的三角函数值,属于基础题.4、C【解题分析】利用同角平方关系可得,,结合可得,从而可得的取值范围,进而可判断三角形的形状【题目详解】解:,,为三角形内角,,为钝角,即三角形为钝角三角形故选C【题目点拨】本题主要考查了利用同角平方关系的应用,其关键是变形之后从的符号中判断的取值范围,属于三角函数基本技巧的运用5、D【解题分析】>1,<0,0<<1,∴b<c<1,又在x∈(-∞,1)上是减函数,∴f(c)<f(b)<0,而f(a)>0,∴f(c)<f(b)<f(a).点睛:在比较幂和对数值的大小时,一般化为同底数的幂(利用指数函数性质)或同底数对数(利用对数函数性质),有时也可能化为同指数的幂(利用幂函数性质)比较大小,在不能这样转化时,可借助于中间值比较,如0或1等.把它们与中间值比较后可得出它们的大小6、A【解题分析】根据三角函数性质计算对称中心【题目详解】令,则,故图象的对称中心为故选:A7、D【解题分析】作出g(x)=图象,它与f(x)的图象交点为和,由图象可得8、D【解题分析】解出不等式,然后可得答案.【题目详解】因为,所以故选:D9、C【解题分析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【题目详解】即故选:C【题目点拨】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.10、D【解题分析】求出,由三角函数定义求得,再由诱导公式得结论【题目详解】依题有,∴,∴.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、kπ,π4【解题分析】根据正切函数性质求解、【题目详解】由正切函数性质,由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案为:[kπ,kπ+π412、(1)是增函数,解集是(2)【解题分析】(1)根据函数为奇函数,求得,得到,由,求得,得到是增函数,把不等式转化为,结合单调性,即可求解;(2)由,求得,得到,得出,令,结合指数函数的性质和换元法,即可求解.【小问1详解】解:因为函数且是定义域为的奇函数,可得,即,可得,所以,即,由,可得且且,解得,所以是增函数,又由,可得,所以,解得,所以不等式的解集是【小问2详解】解:由函数,因为,即且,解得,所以,由,令,则由(1)得在上是增函数,故,则在单调递增,所以函数的最小值为,即在上最小值为.13、①.②.【解题分析】利用指数式与对数的互化以及对数的运算性质化简可得结果.【题目详解】因为,则,故.故答案为:;214、4【解题分析】故答案为415、2x+y-14=0【解题分析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出.【题目详解】由A,B两点得,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.故答案为:2x+y-14=0.16、或【解题分析】当直线没有斜率时,直线的方程为x=2,满足题意,所以此时直线的方程为x=2.当直线存在斜率时,设直线的方程为所以故直线的方程为或.故填或.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)直接求集合的交集运算解题即可;(2)先求集合的补集,再求交集即可解题.【题目详解】(1)因为全集,集合,或所以(2)或;=或.【题目点拨】本题考查求集合交集和补集的运算,属于基础题.18、(1)(2)【解题分析】(1)转化为,可得答案;(2)转化为时,利用基本不等式对求最值可得答案【小问1详解】由题意得恒成立,得,解得,故a的取值范围为【小问2详解】由,得,即,因为,所以,因为,所以,当且仅当,即时,等号成立故,a的取值范围为19、(1)见解析(2)9【解题分析】(1)由已知可得,根据线面垂直的判定得平面,进而可得平面,由面面垂直的判定可得证.(2)根据四棱锥的体积可得.过作于,连接,可证得平面,.可求得,可求得四面体的表面积.【题目详解】(1)证明:∵是以为斜边的等腰直角三角形,∴,又,∴平面,则.又,∴平面.又平面,∴平面平面.(2)解:∵,且,∴.∴.过作于,连接,∵.∴平面,则.∵.∴.∴.故四面体的表面积为.【题目点拨】本题考查面面垂直的证明,四棱锥的体积和表面积的计算,关键在于熟记各线面平行、垂直,面面平行、垂直的判定定理,严格地满足所需的条件,属于中档题.20、(1)0(2)【解题分析】(1)由偶函数的定义得出a的值;(2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围【小问1详解】因为是偶函数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论