版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市吴江区震泽中学2024届数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-12.已知则的值为()A. B.2C.7 D.53.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.设,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.如图是函数的部分图象,则下列说法正确的是()A. B.C. D.6.已知函数,则函数的零点所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.已知,求的值()A. B.C. D.8.已知的值域为,那么的取值范围是()A. B.C. D.9.函数的零点是A. B.C. D.10.若向量,则下列结论正确的是A. B..C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数满足,且在区间上,则的值为____12.,,则的值为__________.13.已知函数是定义在的奇函数,则实数b的值为_________;若函数,如果对于,,使得,则实数a的取值范围是__________14.函数的定义域为_________15.函数的最小值是________.16.已知,,与的夹角为60°,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间的图象(只作图不写过程).18.已知点,,,.(1)若,求的值;(2)若,求的值.19.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值20.已知函数的图象的一部分如图所示:(1)求函数的解析式;(2)求函数图象的对称轴方程及对称中心21.已知函数,.(1)若函数在为增函数,求实数的取值范围;(2)若函数为偶函数,且对于任意,,都有成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【题目详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B2、B【解题分析】先算,再求【题目详解】,故选:B3、B【解题分析】根据充分条件、必要条件的概念判断即可.【题目详解】若,则成立,即必要性成立,反之若,则不成立,所以“”是“”的必要不充分条件.故选:B.4、D【解题分析】若,则,故不充分;若,则,而,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.5、A【解题分析】先通过观察图像可得A和周期,根据周期公式可求出,再代入最高点坐标可得.【题目详解】由图像得,,则,,,得,又,.故选:A.6、B【解题分析】先分析函数的单调性,进而结合零点存在定理,可得函数在区间上有一个零点【题目详解】解:函数在上为增函数,又(1),(2),函数在区间上有一个零点,故选:7、A【解题分析】利用同角三角函数的基本关系,即可得到答案;【题目详解】,故选:A8、C【解题分析】先求得时的值域,再根据题意,当时,值域最小需满足,分析整理,即可得结果.【题目详解】当,,所以当时,,因为的值域为R,所以当时,值域最小需满足所以,解得,故选:C【题目点拨】本题考查已知函数值域求参数问题,解题要点在于,根据时的值域,可得时的值域,结合一次函数的图像与性质,即可求得结果,考查分析理解,计算求值的能力,属基础题.9、B【解题分析】函数y=x2-2x-3的零点即对应方程的根,故只要解二次方程即可【题目详解】由y=x2-2x-3=(x-3)(x+1)=0,得到x=3或x=-1,所以函数y=x2-2x-3的零点是3和-1故选B【题目点拨】本题考查函数的零点的概念和求法.属基本概念、基本运算的考查10、C【解题分析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.12、#0.3【解题分析】利用“1”的代换,构造齐次式方程,再代入求解.【题目详解】,故答案为:13、①.0②.【解题分析】由,可得,设在的值域为,在上的值域为,根据题意转化为,根据函数的单调性求得函数和的值域,结合集合的运算,列出不等式组,即可求解.【题目详解】由函数是定义在的奇函数,可得,即,经检验,b=0成立,设在值域为,在上的值域为,对于,,使得,等价于,又由为奇函数,可得,当时,,,所以在的值域为,因为在上单调递增,在上单调递减,可得的最小值为,最大值为,所以函数的值域为,则,解得,即实数的取值范围为.故答案为:;.14、【解题分析】根据被开放式大于等于零和对数有意义,解对数不等式得到结果即可.【题目详解】∵函数∴x>0且,∴∴函数的定义域为故答案为【题目点拨】本题考查了根据函数的解析式求定义域的应用问题,是基础题目15、2【解题分析】直接利用基本不等式即可得出答案.【题目详解】解:因为,所以,当且仅当,即时,取等号,所以函数的最小值为2.故答案为:2.16、10【解题分析】由数量积的定义直接计算.【题目详解】.故答案为:10.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期T=π;单调递减区间为(k∈Z);(2)图象见解析.【解题分析】(1)利用二倍角公式化简函数,再根公式求函数的周期和单调递减区间;(2)利用“五点法”画出函数的图象.【题目详解】解:f(x)=+cos2x=sin2x+cos2x=sin(2x+)(1)∴函数f(x)的最小正周期T==π,当2kπ+≤2x+≤2kπ+π,k∈Z,时,即2kπ+≤2x≤2kπ+π,k∈Z,故kπ+≤x≤kπ+π,k∈Z∴函数f(x)单调递减区间为[kπ+,kπ+π](k∈Z)(2)图象如下:18、(1)(2)【解题分析】(1)利用列方程,化简求得.(2)利用列方程,结合同角三角函数的基本关系式、二倍角公式、两角差的余弦公式求得正确答案.【小问1详解】,,,,由于,所以.【小问2详解】若,则,,当时,上式不符合,所以,,所以,由两边平方并化简得,,所以,所以,.19、(1);(2);(3)见解析【解题分析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【题目详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【题目点拨】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力20、(1);(2)对称轴,;对称中心为,【解题分析】(1)根据图形的最高点最低点,得到,以及观察到一个周期的长度为8,求出,在代入点的坐标即可求出,从而得到表达式;(2)利用正弦曲线的对称轴和对称中心,将看作整体进行计算即可.【题目详解】解:(1)由题图知,,,,又图象经过点,.,,(2)令,.,图象的对称轴,令,.图象的对称中心为,21、(1)(2)【解题分析】(1)利用定义法证明函数的单调性,依题意可得,即,参变分离可得对恒成立,再根据指数函数的性质计算可得;(2)由函数为偶函数,得到,即可求出的值,从而得到的解析式,再利用基本不等式得到,依题意,可得对任意恒成立,即对任意恒成立,①由有意义,求得;②由,得,即可得到对任意恒成立,从而求出,从而求出参数的取值范围;【小问1详解】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版建筑材料购销合同书模板
- 二零二五年度台球室租赁及品牌形象合作合同3篇
- 2025购销合同常用文本
- 二零二五年度全新租赁房屋合同住宅押金退还管理协议3篇
- 2025年度全新出售房屋买卖贷款担保合同3篇
- 2025年度年度全新高空缆车运营意外事故免责服务协议3篇
- 二零二五年度智慧社区建设与运营管理协议合同范文2篇
- 2025年农村兄弟分家协议及遗产分配执行方案
- 2025年度养殖场劳务合同(养殖场安全生产监管)3篇
- 二零二五年度创业投资股权代持专项合同2篇
- 汉语教程我听过钢琴协奏曲黄河课件
- 二氧化碳充装流程
- 12m跨钢栈桥设计计算
- 电路板类英语词汇
- DES算法Matlab代码
- 沙特的矿产资源开发概况及其商机
- 高一生物必修一期末试题(附答案)
- 安全事故应急响应程序流程图(共1页)
- 三年级_上册牛津英语期末试卷
- 损伤容限设计基本概念原理和方法PPT课件
- 水压式沼气池设计
评论
0/150
提交评论