2024届江苏省南大附中高一数学第一学期期末预测试题含解析_第1页
2024届江苏省南大附中高一数学第一学期期末预测试题含解析_第2页
2024届江苏省南大附中高一数学第一学期期末预测试题含解析_第3页
2024届江苏省南大附中高一数学第一学期期末预测试题含解析_第4页
2024届江苏省南大附中高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南大附中高一数学第一学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用,分别表示乌龟和兔子所行的路程(为时间),则下图与故事情节相吻合的是()A. B.C. D.2.已知,,,则的大小关系A. B.C. D.3.已知命题p:,,则为()A., B.,C., D.,4.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④5.已知函数是定义在在上的奇函数,且当时,,则函数的零点个数为()个A.2 B.3C.6 D.76.在下列函数中,同时满足:①在上单调递增;②最小正周期为的是()A. B.C. D.7.设集合,则=A. B.C. D.8.已知全集,集合,集合,则集合A. B.C. D.9.函数的零点所在区间为A. B.C. D.10.已知点,,,且满足,若点在轴上,则等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.夏季为旅游旺季,青岛某酒店工作人员为了适时为游客准备食物,调整投入,减少浪费,他们统计了每个月的游客人数,发现每年各个月份的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,游客人数基本相同;②游客人数在2月份最少,在8月份最多,相差约200人;③2月份的游客约为60人,随后逐月递增直到8月份达到最多.则用一个正弦型三角函数描述一年中游客人数与月份之间关系为__________;需准备不少于210人的食物的月份数为__________.12.已知扇形的圆心角为,其弧长是其半径的2倍,则__________13.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.14.为偶函数,则___________.15.已知直线:,直线:,若,则__________16.函数的定义域为D,给出下列两个条件:①对于任意,当时,总有;②在定义域内不是单调函数.请写出一个同时满足条件①②的函数,则______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)利用函数单调性的定义证明是单调递增函数;(2)若对任意,恒成立,求实数取值范围18.如图,在平面直角坐标系中,以轴的非负半轴为始边的锐角的终边与单位圆相交于点,已知的横坐标为.(1)求的值;(2)求的值.19.已知函数.(1)求f(x)的定义域及单调区间;(2)求f(x)的最大值,并求出取得最大值时x的值;(3)设函数,若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.20.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.21.对于等式,如果将视为自变量,视为常数,为关于(即)的函数,记为,那么,是幂函数;如果将视为常数,视为自变量,为关于(即)的函数,记为,那么,是指数函数;如果将视为常数,视为自变量为关于(即)的函数,记为,那么,是对数函数.事实上,由这个等式还可以得到更多的函数模型.例如,如果为常数(为自然对数的底数),将视为自变量,则为的函数,记为(1)试将表示成的函数;(2)函数的性质通常指函数的定义域、值域、单调性、奇偶性等,请根据你学习到的函数知识直接写出该函数的性质,不必证明.并尝试在所给坐标系中画出函数的图象

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】分别分析乌龟和兔子随时间变化它们的路程变化情况,即直线的斜率变化即可.【题目详解】解:对于乌龟,其运动过程分为两段:从起点到终点乌龟没有停歇,一直以匀速前进,其路程不断增加;到终点后,等待兔子那段时间路程不变;对于兔子,其运动过程分三段:开始跑的快,即速度大,所以路程增加的快;中间由于睡觉,速度为零,其路程不变;醒来时追赶乌龟,速度变大,所以路程增加的快;但是最终是乌龟到达终点用的时间短.故选:B【题目点拨】本题考查利用函数图象对实际问题进行刻画,是基础题.2、D【解题分析】利用指数函数与对数函数的单调性即可得出【题目详解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故选D【题目点拨】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题3、C【解题分析】全称命题的否定定义可得.【题目详解】根据全称命题的否定,:,.故选:C.4、D【解题分析】对每个函【解题分析】判断奇偶性及单调性即可.【题目详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D5、D【解题分析】作出函数,和图象,可知当时,的零点个数为3个;再根据奇函数的对称性,可知当时,也有3个零点,再根据,由此可计算出函数的零点个数.【题目详解】在同一坐标系中作出函数,和图象,如下图所示:由图象可知,当时,的零点个数为3个;又因为函数和均是定义在在上的奇函数,所以是定义在在上的奇函数,根据奇函数的对称性,可知当时,的零点个数也为3个,又,所以也是零点;综上,函数的零点个数一共有7个.故选:D.6、C【解题分析】根据题意,结合余弦、正切函数图像性质,一一判断即可.【题目详解】对于选项AD,结合正切函数图象可知,和的最小正周期都为,故AD错误;对于选项B,结合余弦函数图象可知,在上单调递减,故B错误;对于选项C,结合正切函数图象可知,在上单调递增,且最小正周期,故C正确.故选:C.7、C【解题分析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化8、A【解题分析】,所以,故选A.考点:集合运算.9、C【解题分析】要判断函数的零点位置,我们可以根据零点存在定理,依次判断区间的两个端点对应的函数值,然后根据连续函数在区间上零点,则与异号进行判断【题目详解】,,故函数的零点必落在区间故选C【题目点拨】本题考查的知识点是函数的零点,解答的关键是零点存在定理:即连续函数在区间上与异号,则函数在区间上有零点10、C【解题分析】由题意得,∴设点的坐标为,∵,∴,∴,解得故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.5【解题分析】设函数为,根据题意,即可求得函数的解析式,再根据题意得出不等式,即可求解.【题目详解】设该函数为,根据条件①,可知这个函数的周期是12;由②可知,最小,最大,且,故该函数的振幅为100;由③可知,在上单调递增,且,所以,根据上述分析,可得,解得,且,解得,又由当时,最小,当时,最大,可得,且,又因为,所以,所以游客人数与月份之间的关系式为,由条件可知,化简得,可得,解得,因为,且,所以,即只有五个月份要准备不少于210人的食物.故答案为:;.12、-1【解题分析】由已知得,所以则,故答案.13、【解题分析】求出扇形的半径后,利用扇形的面积公式可求得结果.【题目详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:14、【解题分析】根据偶函数判断参数值,进而可得函数值.【题目详解】由为偶函数,得,,不恒为,,,,故答案为:.15、1【解题分析】根据两直线垂直时,系数间满足的关系列方程即可求解.【题目详解】由题意可得:,解得:故答案为:【题目点拨】本题考查直线垂直的位置关系,考查理解辨析能力,属于基础题.16、【解题分析】根据题意写出一个同时满足①②的函数即可.【题目详解】解:易知:,上单调递减,上单调递减,故对于任意,当时,总有;且在其定义域上不单调.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令,根据x的范围,可得t的范围,原式等价为,,只需即可,分别讨论、和三种情况,根据二次函数的性质,计算求值,分析即可得答案.【小问1详解】由已知可得的定义域为,任取,且,则,因为,,,所以,即,所以在上是单调递增函数【小问2详解】,令,则当时,,所以令,,则只需当,即时,在上单调递增,所以,解得,与矛盾,舍去;当,即时,在上单调递减,在上单调递增,所以,解得;当即时,在上单调递减,所以,解得,与矛盾,舍去综上,实数的取值范围是18、(1)(2)【解题分析】(1)根据三角函数的定义,直接求解;(2)求出,再根据两角和的余弦公式求解即可.【小问1详解】设,由已知,,,所以,得.【小问2详解】由(1)知,,所以19、(1)定义域为(﹣1,3);f(x)的单调增区间为(﹣1,1],f(x)的单调减区间为[1,3);(2)当x=1时,函数f(x)取最大值1;(3)a≥﹣2.【解题分析】(1)利用对数的真数大于零即可求得定义域,根据复合函数的单调性“同增异减”即可求得单调区间;(2)根据函数的单调性即可求解;(3)将f(x)≤g(x)转化为x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,即即可,结合基本不等式即可求解.【题目详解】解:(1)令2x+3﹣x2>0,解得:x∈(﹣1,3),即f(x)的定义域为(﹣1,3),令t=2x+3﹣x2,则,∵为增函数,x∈(﹣1,1]时,t=2x+3﹣x2为增函数;x∈[1,3)时,t=2x+3﹣x2为减函数;故f(x)的单调增区间为(﹣1,1];f(x)的单调减区间为[1,3)(2)由(1)知当x=1时,t=2x+3﹣x2取最大值4,此时函数f(x)取最大值1;(3)若不等式f(x)≤g(x)在x∈(0,3)上恒成立,则2x+3﹣x2≤(a+2)x+4在x∈(0,3)上恒成立,即x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,当x∈(0,3)时,x+≥2,则﹣(x+)≤﹣2,故a≥﹣220、(1)2;(2)(1,3].【解题分析】(1)根据函数是奇函数求得的解析式,比照系数,即可求得参数的值;(2)根据分段函数的单调性,即可列出不等式,即可求得参数的范围.【题目详解】(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x).于是当x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)要使f(x)在[-1,a-2]上单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论