安徽省合肥一中、安庆一中等六校教育研究会2024届高一数学第一学期期末学业质量监测试题含解析_第1页
安徽省合肥一中、安庆一中等六校教育研究会2024届高一数学第一学期期末学业质量监测试题含解析_第2页
安徽省合肥一中、安庆一中等六校教育研究会2024届高一数学第一学期期末学业质量监测试题含解析_第3页
安徽省合肥一中、安庆一中等六校教育研究会2024届高一数学第一学期期末学业质量监测试题含解析_第4页
安徽省合肥一中、安庆一中等六校教育研究会2024届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥一中、安庆一中等六校教育研究会2024届高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数满足,那么的最小值为(

)A. B.C. D.2.命题“任意,都有”的否定为()A.存在,使得B.不存在,使得C.存在,使得D.对任意,都有3.土地沙漠化的治理,对中国乃至世界来说都是一个难题,我国创造了治沙成功案例——毛乌素沙漠.某沙漠经过一段时间的治理,已有1000公顷植被,假设每年植被面积以20%的增长率呈指数增长,按这种规律发展下去,则植被面积达到4000公顷至少需要经过的年数为()(参考数据:取)A.6 B.7C.8 D.94.以下四组数中大小比较正确的是()A. B.C. D.5.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或46.若角的终边过点,则等于A. B.C. D.7.若,则关于的不等式的解集是()A. B.或C.或 D.8.若函数(,且)在区间上单调递增,则A., B.,C., D.,9.已知某种树木的高度(单位:米)与生长年限t(单位:年,)满足如下的逻辑斯谛(Logistic)增长模型:,其中为自然对数的底数,设该树栽下的时刻为0,则该种树木生长至3米高时,大约经过的时间为()A.2年 B.3年C.4年 D.5年10.某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上A.快、新、乐 B.乐、新、快C.新、乐、快 D.乐、快、新二、填空题:本大题共6小题,每小题5分,共30分。11.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.12.若命题“,”为假命题,则实数的取值范围为______.13.已知幂函数的图象经过点,则___________.14.关于函数与有下面三个结论:①函数的图像可由函数的图像平移得到②函数与函数在上均单调递减③若直线与这两个函数的图像分别交于不同的A,B两点,则其中全部正确结论的序号为____15.某房屋开发公司用14400万元购得一块土地,该地可以建造每层的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层整幢楼房每平方米建筑费用提高640元.已知建筑5层楼房时,每平方米建筑费用为8000元,公司打算造一幢高于5层的楼房,为了使该楼房每平米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成____________层,此时,该楼房每平方米的平均综合费用最低为____________元16.函数,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)写出下列两组诱导公式:①关于与的诱导公式;②关于与的诱导公式.(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.18.已知函数fx=logax(a>0且(1)求a的值;(2)求满足0<ffx<119.已知集合A={x|a-1<x<2a+1},B={x|x2-x<0}(I)若a=1,求AB,;(II)若AB=,求实数a的取值范围20.已知是偶函数,是奇函数,且,(1)求和的表达式;(2)若对于任意的,不等式恒成立,求的最大值21.求满足下列条件的圆的方程:(1)经过点,,圆心在轴上;(2)经过直线与的交点,圆心为点.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【题目详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【题目点拨】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.2、A【解题分析】根据全称量词命题的否定为特称量词命题,改量词,否结论,即得答案.【题目详解】命题“任意,都有”的否定为“存在,使得”,故选:A3、C【解题分析】根据题意列出不等式,利用对数换底公式,计算出结果.【题目详解】经过年后,植被面积为公顷,由,得.因为,所以,又因为,故植被面积达到4000公顷至少需要经过的年数为8.故选:C4、C【解题分析】结合指数函数、对数函数、幂函数性质即可求解详解】对A,,故,错误;对B,在第一象限为增函数,故,错误;对C,为增函数,故,正确;对D,,,故,错误;故选:C【题目点拨】本题考查根据指数函数,对数函数,幂函数性质比较大小,属于基础题5、C【解题分析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【题目详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.6、C【解题分析】角终边过点,则,所以.故选C.7、D【解题分析】判断出,再利用一元二次不等式的解法即可求解.【题目详解】因,所以,即.所以,解得.故选:D【题目点拨】本题考查了一元二次不等式的解法,考查了基本运算求解能力,属于简单题.8、B【解题分析】函数在区间上单调递增,在区间内不等于,故当时,函数才能递增故选9、C【解题分析】根据题意,列方程,即可求解.【题目详解】由题意可得,令,即,解得:t=4.故选:C10、A【解题分析】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,即可得出结论【题目详解】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,故选A【题目点拨】本题考查四棱锥的结构特征,考查学生对图形的认识,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求得长方体外接球的半径,从而求得球的表面积.【题目详解】由题知,球O的半径为,则球O的表面积为故答案为:12、【解题分析】命题为假命题时,二次方程无实数解,据此可求a的范围.【题目详解】若命题“,”为假命题,则一元二次方程无实数解,∴.∴a的取值范围是:.故答案为:.13、##【解题分析】根据题意得到,求出的值,进而代入数据即可求出结果.【题目详解】由题意可知,即,所以,即,所以,因此,故答案为:.14、①②##②①【解题分析】根据三角函数的平移法则和单调性知①②正确,取代入计算得到③错误,得到答案.【题目详解】向左平移个单位得到,①正确;函数在上单调递减,函数在上单调递减,②正确;取,则,,,③错误.故答案为:①②15、①.15②.24000【解题分析】设公司应该把楼建成层,可知每平方米的购地费用,已知建筑5层楼房时,每平方米建筑费用为8000元,从中可得出建层的每平方米的建筑费用,然后列出式子求得其最小值,从而可求得答案【题目详解】设公司应该把楼建成层,则由题意得每平方米购地费用为(元),每平方米的建筑费用为(元),所以每平方米的平均综合费用为,当且仅当,即时取等号,所以公司应把楼层建成15层,此时,该楼房每平方米的平均综合费用最低为24000元,故答案为:15,2400016、【解题分析】先求的值,再求的值.【题目详解】由题得,所以.故答案为【题目点拨】本题主要考查指数对数运算和分段函数求值,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)详见解析【解题分析】(1)按要求写出对应公式即可.(2)利用任意角定义以及对称性即可证明对应公式.【题目详解】(1)①,,.②,,.(2)①证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.②证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.【题目点拨】主要考查对诱导公式的掌握以及推导过程,熟练运用任意角三角函数的定义,属于基础题.18、(1)2;(2)2,4.【解题分析】(1)由函数fx的单调性和最值可求得实数a(2)由已知条件可得1<fx=log2【小问1详解】解:因为fx=log因为fx在12,4所以f12小问2详解】解;由0<ffx=log2所以x的取值范围是2,419、(I);(II)或【解题分析】(I)先解不等式得集合B,再根据并集、补集、交集定义求结果;(II)根据与分类讨论,列对应条件,解得结果.【题目详解】(I)a=1,A={x|0<x<3},所以;(II)因为AB=,所以当时,,满足题意;当时,须或综上,或【题目点拨】本题考查集合交并补运算、根据并集结果求参数,考查基本分析求解能力,属中档题.20、(1),;(2)【解题分析】(1)根据已知的关系式以及函数的奇偶性列出另一个关系式,联立求出函数和的表达式;(2)先将已知不等式进行化简,然后可以分离参数,利用基本不等式求最值即可求解.【题目详解】(1)因为为偶函数,为奇函数,①,所以,即②,联立①②,解得:,,(2)因为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论