河北省邢台市桥西区第一中学2024届高一上数学期末监测模拟试题含解析_第1页
河北省邢台市桥西区第一中学2024届高一上数学期末监测模拟试题含解析_第2页
河北省邢台市桥西区第一中学2024届高一上数学期末监测模拟试题含解析_第3页
河北省邢台市桥西区第一中学2024届高一上数学期末监测模拟试题含解析_第4页
河北省邢台市桥西区第一中学2024届高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邢台市桥西区第一中学2024届高一上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知()A. B.C. D.2.下列集合与集合相等的是()A. B.C. D.3.设全集,集合,,则()A. B.C. D.4.下列运算中,正确的是()A. B.C. D.5.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要6.若,,若,则a的取值集合为()A. B.C. D.7.已知函数在区间上单调递增,若成立,则实数的取值范围是()A. B.C. D.8.命题“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”9.已知幂函数的图象过点(4,2),则()A.2 B.4C.2或-2 D.4或-410.函数(,且)的图象必过定点A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数(且)的图像恒过定点______.12.在中,已知,则______.13.若直线l在x轴上的截距为1,点到l的距离相等,则l的方程为______.14.已知幂函数的图象过点,则________15.的值等于____________16.若函数是R上的减函数,则实数a的取值范围是___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差)(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?(以下数据供参考:,)18.计算(1);(2).19.(1)求式子lg25+lg2+的值(2)已知tan=2.求2sin2-3sincos+cos2的值.20.已知函数(且)的图象过点.(1)求函数的解析式;(2)解不等式.21.某地为践提出的“绿水青山就是金山银山”的理念,大力开展植树造林.假设一片森林原来的面积为a亩,计划每年种植一些树苗,使森林面积的年平均增长率为20%,且x年后森林的面积为y亩(1)列出y与x的函数解析式并写出函数的定义域;(2)为使森林面积至少达到6a亩至少需要植树造林多少年?参考数据:

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用诱导公式对式子进行化简,转化为特殊角的三角函数,即可得到答案;【题目详解】,故选:D2、C【解题分析】根据各选项对于的集合的代表元素,一一判断即可;【题目详解】解:集合,表示含有两个元素、的集合,对于A:,表示含有一个点的集合,故不相等;对于B:,表示的是点集,故不相等;对于C:,表示方程的解集,因为的解为,或,所以对于D:,故不相等故选:C3、B【解题分析】先求出集合B,再根据交集补集定义即可求出.【题目详解】,,,.故选:B.4、C【解题分析】根据对数和指数的运算法则逐项计算即可.【题目详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.5、B【解题分析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【题目详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【题目点拨】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.6、B【解题分析】或,分类求解,根据可求得的取值集合【题目详解】或,,,或或,解得或,综上,故选:7、A【解题分析】由增函数的性质及定义域得对数不等式组,再对数函数性质可求解【题目详解】不等式即为,∵函数在区间上单调递增,∴,即,解得,∴实数的取值范围是,选A【题目点拨】本题考查函数的单调性应用,考查解函数不等式,解题时除用函数的单调性得出不等关系外,一定要注意函数的定义域的约束,否则易出错8、D【解题分析】根据特称命题的否定是全称命题,即可得出命题的否定形式【题目详解】因为特称命题的否定是全称命题,所以命题“,使”的否定形式为:,使故选:D9、B【解题分析】设幂函数代入已知点可得选项.【题目详解】设幂函数又函数过点(4,2),,故选:B.10、C【解题分析】因为函数,且有(且),令,则,,所以函数的图象经过点.故选:C.【题目点拨】本题主要考查对数函数(且)恒过定点,属于基础题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据指数函数恒过定点的性质,令指数幂等于零即可.【题目详解】由,.此时.故图像恒过定点.故答案为:【题目点拨】本题主要考查指数函数恒过定点的性质,属于简单题.12、11【解题分析】由.13、或【解题分析】考虑斜率不存在和存在两种情况,利用点到直线距离公式计算得到答案.【题目详解】显然直线轴时符合要求,此时的方程为.当直线l的斜率存在时,设直线l的斜率为k,则l的方程为,即.∵A,B到l的距离相等∴,∴,∴,∴直线l的方程为.故答案为或【题目点拨】本题考查了点到直线的距离公式,忽略掉斜率不存在的情况是容易犯的错误.14、3【解题分析】先求得幂函数的解析式,再去求函数值即可.【题目详解】设幂函数,则,则,则,则故答案为:315、2【解题分析】利用诱导公式、降次公式进行化简求值.【题目详解】.故答案为:16、【解题分析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【题目详解】由题知故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4.5(2)1000【解题分析】(1)把最大振幅和标准振幅直接代入公式M=lgA-lg求解;(2)利用对数式和指数式的互化由M=lgA-lg得A=,把M=8和M=5分别代入公式作比后即可得到答案试题解析:(1)因此,这次地震的震级为里氏4.5级.(2)由可得,即,当时,地震的最大振幅为;当时,地震的最大振幅为;所以,两次地震的最大振幅之比是:答:8级地震的最大振幅是5级地震的最大振幅的1000倍.考点:函数模型的选择与应用18、(1)2(2)【解题分析】(1)根据对数计算公式,即可求得答案;(2)将化简为,即可求得答案.【小问1详解】【小问2详解】19、(1);(2).【解题分析】(1)利用的对数性质计算即可;(2)利用三角函数同角关系计算即可.【题目详解】=;,在第一或第三象限,,,若在第一象限,则,若在第三象限,则,不论是在第一或第三象限,都有,原式;综上,答案为:,.20、(1)(2)【解题分析】(1)把已知点的坐标代入求解即可;(2)直接利用函数单调性即可求出结论,注意真数大于0的这一隐含条件【小问1详解】因为函数(且)的图象过点.,所以,即;【小问2详解】因为单调递增,所以,即不等式的解集是21、(1)(且);(2)10.【解题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论