安徽省合肥市巢湖市2024届高一上数学期末考试试题含解析_第1页
安徽省合肥市巢湖市2024届高一上数学期末考试试题含解析_第2页
安徽省合肥市巢湖市2024届高一上数学期末考试试题含解析_第3页
安徽省合肥市巢湖市2024届高一上数学期末考试试题含解析_第4页
安徽省合肥市巢湖市2024届高一上数学期末考试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市巢湖市2024届高一上数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“,是4的倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4的倍数 D.,不是4的倍数2.已知函数,则函数的零点个数是A.1 B.2C.3 D.43.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为()A.2 B.C.1 D.4.若两个非零向量,满足,则与的夹角为()A. B.C. D.5.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.6.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个7.已知为奇函数,当时,,则()A.3 B.C.1 D.8.函数的零点个数为()A. B.C. D.9.某几何体的三视图如图所示,则该几何的体积为A.16+8 B.8+8C.16+16 D.8+1610.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线过点.若直线在两坐标轴上的截距相等,求直线的方程______.12.在中,已知是x的方程的两个实根,则________13.已知关于的不等式的解集为,其中,则的最小值是___________.14.已知函数,,对,用表示,中的较大者,记为,则的最小值为______.15.已知偶函数在单调递减,.若,则的取值范围是__________.16.已知,用m,n表示为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值;(2)若,求的值.18.设S={x|x=m+n,m、n∈Z}(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1、x2,则x1+x2、x1·x2是否属于S?19.某公司今年年初用万元收购了一个项目,若该公司从第年到第(且)年花在该项目的其他费用(不包括收购费用)为万元,该项目每年运行的总收入为万元(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以万元的价格卖出;②当年平均盈利最大时,以万元的价格卖出假如要在这两种方案中选择一种,你会选择哪一种?请说明理由20.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围21.计算下列各式的值:(1)(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据特称量词命题的否定是全称量词命题即可求解【题目详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B2、A【解题分析】设,则函数等价为,由,转化为,利用数形结合或者分段函数进行求解,即可得到答案【题目详解】由题意,如图所示,设,则函数等价为,由,得,若,则,即,不满足条件若,则,则,满足条件,当时,令,解得(舍去);当时,令,解得,即是函数的零点,所以函数的零点个数只有1个,故选A【题目点拨】本题主要考查了函数零点问题的应用,其中解答中利用换元法结合分段函数的表达式以及数形结合是解决本题的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.3、D【解题分析】圆心为,点到直线的距离为.故选D.4、C【解题分析】根据数量积的运算律得到,即可得解;【题目详解】解:因为,所以,即,即,所以,即与的夹角为;故选:C5、A【解题分析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.6、A【解题分析】根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.【题目详解】①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A7、B【解题分析】根据奇偶性和解析式可得答案.【题目详解】由题可知,故选:B8、B【解题分析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B.9、A【解题分析】由已知中的三视图可得该几何体是一个半圆柱和正方体的组合体,半圆柱底面半径为2,故半圆柱的底面积半圆柱的高故半圆柱的体积为,长方体的长宽高分别为故长方体的体积为故该几何体的体积为,选A考点:三视图,几何体的体积10、A【解题分析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【题目详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【题目点拨】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】根据已知条件,分直线过原点,直线不过原点两种情况讨论,即可求解【题目详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即,当直线不过原点时,设直线的方程为,把点代入方程可得,故直线的方程是,综上所述,所求直线的方程为或故答案为:或.12、##【解题分析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【题目详解】由题设,,,又,且,∴.故答案为:.13、【解题分析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【题目详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:14、【解题分析】作出函数的图象,结合图象即可得的最小值.【题目详解】如图,在同一直角坐标系中分别作出函数和的图象,因为对,,故函数的图象如图所示:由图可知,当时,函数取得最小值.故答案为:.15、【解题分析】因为是偶函数,所以不等式,又因为在上单调递减,所以,解得.考点:本小题主要考查抽象函数的奇偶性与单调性,考查绝对值不等式的解法,熟练基础知识是关键.16、【解题分析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据三角函数的基本关系式,化简得,即可求解;(2)由(1)知,根据三角函数诱导公式,化简得到原式,结合三角函数的基本关系式,即可求解.【题目详解】(1)根据三角函数的基本关系式,可得,解得.(2)由(1)知,又由.因为,且,所以,可得,所以18、(1)见解析;(2)见解析.【解题分析】(1)由a=a+0×即可判断;(2)不妨设x1=m+n,x2=p+q,经过运算得x1+x2=(m+n)+(p+q),x1·x2=(mp+2nq)+(mq+np),即可判断.试题解析:(1)a是集合S的元素,因为a=a+0×∈S(2)不妨设x1=m+n,x2=p+q,m、n、p、q∈Z则x1+x2=(m+n)+(p+q)=(m+n)+(p+q),∵m、n、p、q∈Z.∴p+q∈Z,m+n∈Z.∴x1+x2∈S,x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m、n、p、q∈Z故mp+2nq∈Z,mq+np∈Z∴x1·x2∈S综上,x1+x2、x1·x2都属于S点睛:集合是高考中必考的知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错19、(1)第年(2)选择方案②,理由见解析【解题分析】(1)设项目运行到第年盈利为万元,可求得关于的函数关系式,解不等式可得的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.【小问1详解】解:设项目运行到第年的盈利为万元,则,由,得,解得,所以该项目运行到第年开始盈利【小问2详解】解:方案①,当时,有最大值即项目运行到第年,盈利最大,且此时公司总盈利为万元,方案②,当且仅当,即时,等号成立即项目运行到第年,年平均盈利最大,且此时公司的总盈利为万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②20、(1),;(2)见解析;(3).【解题分析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【题目详解】(1)在上是奇函数,∴,∴,∴,∴,∴,∴,∴,∴,经检验知:,∴,(2)由(1)可知,在上减函数.(3)对于恒成立,对于恒成立,在上是奇函数,对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论