安徽省合肥市庐阳区第一中学2024届高一上数学期末调研模拟试题含解析_第1页
安徽省合肥市庐阳区第一中学2024届高一上数学期末调研模拟试题含解析_第2页
安徽省合肥市庐阳区第一中学2024届高一上数学期末调研模拟试题含解析_第3页
安徽省合肥市庐阳区第一中学2024届高一上数学期末调研模拟试题含解析_第4页
安徽省合肥市庐阳区第一中学2024届高一上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市庐阳区第一中学2024届高一上数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.若sinα=-,且α为第三象限的角,则cosα的值等于()A. B.C. D.3.若函数,,则函数的图像经过怎样的变换可以得到函数的图像①先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.②先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.③将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.④将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.A.①③ B.①④C.②③ D.②④4.各侧棱长都相等,底面是正多边形的棱锥称为正棱锥,正三棱锥的侧棱长为,侧面都是直角三角形,且四个顶点都在同一个球面上,则该球的表面积为()A. B.C. D.5.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6.下列说法中,正确的是()A.锐角是第一象限的角 B.终边相同的角必相等C.小于的角一定为锐角 D.第二象限的角必大于第一象限的角7.圆关于直线对称的圆的方程为A. B.C. D.8.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数,则函数图象的对称中心为()A. B.C. D.9.如果角的终边在第二象限,则下列结论正确的是A. B.C. D.10.已知命题,则为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)12.在中,已知,则______.13.关于x的不等式在上恒成立,则实数m的取值范围是______14.经过点作圆的切线,则切线的方程为__________15.如果满足对任意实数,都有成立,那么a的取值范围是______16.____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在矩形中,点是边上中点,点在边上(1)若点是上靠近的三等分点,设,求的值(2)若,当时,求的长18.考虑到高速公路行车安全需要,一般要求高速公路的车速(公里/小时)控制在范围内.已知汽车以公里/小时的速度在高速公路上匀速行驶时,每小时的油耗(所需要的汽油量)为升,其中为常数,不同型号汽车值不同,且满足.(1)若某型号汽车以120公里/小时的速度行驶时,每小时的油耗为升,欲使这种型号的汽车每小时的油耗不超过9升,求车速的取值范围;(2)求不同型号汽车行驶100千米的油耗的最小值.19.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时(尾/立方米)时,的值为2(千克/年);当时,是的一次函数;当(尾/立方米)时,因缺氧等原因,的值为0(千克/年).(1)当时,求函数的表达式;(2)当为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.20.已知函数,(1)求在上的最小值;(2)记集合,,若,求的取值范围.21.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】先分析得到,即得点所在的象限.【题目详解】因为是第二象限角,所以,所以点在第四象限,故选D【题目点拨】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.2、B【解题分析】先根据为第三象限角,可知,再根据平方关系,利用,可求的值【题目详解】解:由题意,为第三象限角,故选.【题目点拨】本题以三角函数为载体,考查同角三角函数的平方关系,解题时应注意判断三角函数的符号,属于基础题.3、A【解题分析】依次判断四种变换方式的结果是否符合题意,选出正确变换【题目详解】函数,先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以①合题意;先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以②不合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以③合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以④不合题意,故选择A【题目点拨】在进行伸缩变换时,横坐标变为原来的倍;向左或向右进行平移变换注意平移单位要加或减在“”上4、D【解题分析】因为侧棱长为a的正三棱锥P﹣ABC的侧面都是直角三角形,且四个顶点都在一个球面上,三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,正方体的对角线长为:;所以球的表面积为:4π=3πa2故答案为D.点睛:本题考查了球与几何体的问题,是高考中的重点问题,一般外接球需要求球心和半径,首先应确定球心的位置,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心,有时也可利用补体法得到半径.5、D【解题分析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.6、A【解题分析】根据锐角的定义,可判定A正确;利用反例可分别判定B、C、D错误,即可求解.【题目详解】对于A中,根据锐角的定义,可得锐角满足是第一象限角,所以A正确;对于B中,例如:与的终边相同,但,所以B不正确;对于C中,例如:满足,但不是锐角,所以C不正确;对于D中,例如:为第一象限角,为第二象限角,此时,所以D不正确.故选:A.7、A【解题分析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程8、A【解题分析】根据题意并结合奇函数的性质即可求解.【题目详解】由题意得,设函数图象的对称中心为,则函数为奇函数,即,则,解得,故函数图象的对称中心为.故选:.9、B【解题分析】由题意结合三角函数的性质确定所给结论是否正确即可.【题目详解】角的终边在第二象限,则,AC错误;,B正确;当时,,,D错误本题选择B选项.【题目点拨】本题主要考查三角函数符号,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.10、D【解题分析】由全称命题的否定为存在命题,分析即得解【题目详解】由题意,命题由全称命题的否定为存在命题,可得:为故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、,答案不唯一【解题分析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【题目详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)12、11【解题分析】由.13、【解题分析】对m进行讨论,变形,构造新函数求导,利用单调性求解最值可得实数m的取值范围;【题目详解】解:由上,;当时,显然也不成立;;可得设,其定义域为R;则,令,可得;当上时,;当上时,;当时;取得最大值为可得,;解得:;故答案为.【题目点拨】本题考查了导数在判断函数单调性和最值中的应用,属于难题.14、【解题分析】点在圆上,由,则切线斜率为2,由点斜式写出直线方程.【题目详解】因为点在圆上,所以,因此切线斜率为2,故切线方程为,整理得故答案为:15、【解题分析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【题目详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.16、-1【解题分析】根据和差公式得到,代入化简得到答案.【题目详解】故答案为:【题目点拨】本题考查了和差公式,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1),∵是边的中点,点是上靠近的三等分点,∴,又∵,,∴,;(2)设,则,以,为基底,,,又,∴,解得,故长为18、(1);(2)当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.【解题分析】(1)根据题意,可知当时,求出的值,结合条件得出,再结合,即可得出车速的取值范围;(2)设该汽车行驶100千米的油耗为升,得出关于与的函数关系式,通过换元令,则,得出与的二次函数,再根据二次函数的图象和性质求出的最小值,即可得出不同型号汽车行驶100千米的油耗的最小值.【小问1详解】解:由题意可知,当时,,解得:,由,即,解得:,因为要求高速公路的车速(公里/小时)控制在范围内,即,所以,故汽车每小时的油耗不超过9升,求车速的取值范围.【小问2详解】解:设该汽车行驶100千米的油耗为升,则,令,则,所以,,可得对称轴为,由,可得,当时,即时,则当时,;当,即时,则当时,;综上所述,当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.19、(1)(2),鱼的年生长量可以达到最大值12.5【解题分析】(1)根据题意得建立分段函数模型求解即可;(2)根据题意,结合(1)建立一元二次函数模型求解即可.【小问1详解】解:(1)依题意,当时,当时,是的一次函数,假设且,,代入得:,解得.所以【小问2详解】解:当时,,当时,所以当时,取得最大值因为所以时,鱼的年生长量可以达到最大值12.5.20、(1)答案见解析(2)【解题分析】(1)按对称轴与区间的相对位置关系,分三种情况讨论求最小值;(2)分与解不等式,再分析的情况即可求解.【小问1详解】解:(1)由,抛物线开口向上,对称轴为,在上的最小值需考虑对称轴与区间的位置关系.(i)当时,;(ii)当时,;(ⅲ)当时,【小问2详解】(2)解不等式,即,可得:当时,不等式的解为;当时,不等式的解为.(i)当时,要使不等式的解集与有交集,由得:,此时对称轴为,∴只需,即,得.所以此时(ii)当时,要使不等式的解集与有交集,由得:,此时对称轴为,∴只需,即,得.所以此时无解.综上所述,的取值范围.21、(1);(2);(3)7.【解题分析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【题目详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论