




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古赤峰第四中学2024届高一上数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.242.棱长为2的正方体的顶点都在同一球面上,则该球面的表面积为A. B.C. D.3.已知幂函数的图像过点,则下列关于说法正确的是()A.奇函数 B.偶函数C.定义域为 D.在单调递减4.设,,,则、、的大小关系是()A. B.C. D.5.已知,其中a,b为常数,若,则()A. B.C.10 D.26.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.27.已知,则的值为()A B.1C. D.8.下列函数中,既在R上单调递增,又是奇函数的是()A. B.C. D.9.已知命题,则是()A., B.,C., D.,10.函数的单调递减区间为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是______________.12.已知函数在区间是单调递增函数,则实数的取值范围是______13.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.14.函数的定义域是______15.已知,,则________.(用m,n表示)16.函数定义域为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围18.若关于x的不等式的解集为(1)当时,求的值;(2)若,求的值及的最小值19.已知集合,(Ⅰ)当时,求;;(Ⅱ)若,求实数的值20.阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数和,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数的图象是向下凸的,在上任意取两个点,函数的图象总是在线段的下方,此时函数称为下凸函数;函数的图象是向上凸的,在上任意取两个点,函数的图象总是在线段的上方,则函数称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点之间的部分位于线段的下方.定义2:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点之间的部分位于线段的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数在为上凸函数,在上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数是上凸函数;(3)已知函数,若对任意,恒有,尝试数形结合探究实数a的取值范围.21.一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量(克)随着时间(小时)变化的函数关系式近似为,其中(1)若病人一次服用9克的药剂,则有效治疗时间可达多少小时?(2)若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【题目详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A2、A【解题分析】先求出该球面的半径,由此能求出该球面的表面积【题目详解】棱长为2的正方体的顶点都在同一球面上,该球面的半径,该球面的表面积为故选A【题目点拨】本题考查球面的表面积的求法,考查正方体的外接球、球的表面积等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题3、D【解题分析】设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项.【题目详解】设幂函数为,因为函数过点,所以,则,所以,该函数定义域为,则其既不是奇函数也不是偶函数,且由可知,该幂函数在单调递减.故选:D.4、B【解题分析】利用指数函数、对数函数的单调性比较、、三个数与、的大小关系,由此可得出、、的大小关系.【题目详解】,即,,,因此,.故选:B.5、A【解题分析】计算出,结合可求得的值.【题目详解】因为,所以,若,则.故选:A6、B【解题分析】将写成分段函数,画出函数图象数形结合,即可求得结果.【题目详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【题目点拨】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.7、A【解题分析】知切求弦,利用商的关系,即可得解.【题目详解】,故选:A8、B【解题分析】逐一判断每个函数的单调性和奇偶性即可.【题目详解】是奇函数,但在R上不单调递增,故A不满足题意;既在R上单调递增,又是奇函数,故B满足题意;、不是奇函数,故C、D不满足题意;故选:B9、C【解题分析】由全称命题的否定是特称命题即可得结果.【题目详解】由全称命题的否定是特称命题知:,,是,,故选:C.10、A【解题分析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果【题目详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选A【题目点拨】本题考查二次函数的性质,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据表达式有意义列条件,再求解条件得定义域.【题目详解】由题知,,整理得解得.所以函数定义域是.故答案为:.12、【解题分析】求出二次函数的对称轴,即可得的单增区间,即可求解.【题目详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:13、2【解题分析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【题目详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.14、【解题分析】,即定义域为点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)15、【解题分析】根据指数式与对数式的互化,以及对数的运算性质,准确运算,即可求解.【题目详解】因为,,所以,,所以,可得.故答案为:16、【解题分析】解余弦不等式,即可得出其定义域.【题目详解】由对数函数的定义知即,∴,∴函数的定义域为。故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.18、(1);(2);.【解题分析】(1)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、根的判别式进行求解即可;(2)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、基本不等式进行求解即可.【小问1详解】由题可知关于x的方程有两个根,所以故【小问2详解】由题意关于x的方程有两个正根,所以有解得;同时,由得,所以,由于,所以,当且仅当,即,且,解得时取得“=”,此时实数符合条件,故,且当时,取得最小值19、(Ⅰ),(Ⅱ)m的值为8【解题分析】由,(Ⅰ)当m=3时,,则(Ⅱ),此时,符合题意,故实数m的值为820、(1),;(2)证明见解析;(3).【解题分析】(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.【小问1详解】,;【小问2详解】对于二次函数,,满足,即,满足上凸函数定义,二次函数是上凸函数.【小问3详解】由(2)知二次函数是上凸函数,同理易得二次函数为下凸函数,对于函数,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意,恒有,则函数满足上凸函数定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课程开发统一课件
- 民间玩具美术课件
- 2025标准借款协议合同范本
- 刘卫国:MATLAB程序设计与应用
- 家庭教育课程课例分享
- 体位性低血压的抢救与护理
- 2025标准设备租赁合同
- 智慧树知到《中国古建筑文化与鉴赏》(清华大学)章节测试答案
- 2025年水路货物运输合同范本GF12
- 2024-2025统编版道德与法治二年级下册第二单元练习卷附参考答案
- GA/T 1047-2013道路交通信息监测记录设备设置规范
- 第一轮复习八年级上第二单元 遵守社会规则 教学案
- 代理授权书模板
- 论语子路篇-论语子路篇讲解课件
- 咯血-护理查房课件
- 公路工程施工现场安全检查手册
- 黄河上游历史大洪水市公开课金奖市赛课一等奖课件
- 激光跟踪仪使用手册
- 货物采购服务方案
- 图纸答疑格式
- DB11-T 1322.64-2019 安全生产等级评定技术规范 第64部分:城镇供水厂
评论
0/150
提交评论