版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市虹口区复兴高级中学高一数学第一学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则A. B.C. D.,2.若函数存在两个零点,且一个为正数,另一个为负数,则的取值范围为A. B.C. D.3.已知,则,,的大小关系为()A. B.C. D.4.某学生离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,若以纵轴表示离家的距离,横轴表示离家后的时间,则下列四个图形中,符合该学生走法的是()A. B.C. D.5.若函数的图象与轴有交点,且值域,则的取值范围是()A. B.C. D.6.函数(,且)的图象恒过定点,且点在角的终边上,则()A. B.C. D.7.如图,在正方体ABCD﹣A1B1C1D1中,异面直线AC与A1D1所成的角是A.30° B.45°C.60° D.90°8.已知幂函数的图象过(4,2)点,则A. B.C. D.9.若,,,则a,b,c之间的大小关系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c10.若,则()A. B.aC.2a D.4a二、填空题:本大题共6小题,每小题5分,共30分。11.圆柱的侧面展开图是边长分别为的矩形,则圆柱的体积为_____________12.已知,若对一切实数,均有,则___.13.已知函数,若方程有4个不同的实数根,则的取值范围是____14.函数(且)恒过的定点坐标为_____,若直线经过点且,则的最小值为___________.15.设,则________.16.不等式的解集为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)化简:;(2)已知,求的值.18.(1)设函数.若不等式对一切实数恒成立,求实数的取值范围;(2)解关于的不等式.19.有一种新型的洗衣液,去污速度特别快,已知每投放个(,且)单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用.(1)若只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,求的值;(2)若只投放一次个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,则在第分钟时洗衣液是否还能起到有效去污的作用?请说明理由.20.(1)化简:(2)求值:21.如图,已知正方形ABCD的边长为2,分别取BC,CD的中点E,F,连接AE,EF,AF,以AE,EF,FA为折痕进行折叠,使点B,C,D重合于一点P.(1)求证:;(2)求三棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】∵,,∴,,∴.故选2、C【解题分析】根据题意画出函数图像,由图像即可分析出由一个正零点,一个负零点a的范围【题目详解】如图,若存在两个零点,且一个为正数,另一个为负数,则,故选【题目点拨】本题考查了绝对值函数及零点的简单应用,属于基础题3、B【解题分析】利用函数单调性及中间值比大小.【题目详解】,且,故,,故.故选:B4、A【解题分析】纵轴表示离家的距离,所以在出发时间为可知C,D错误,再由刚开始时速度较快,后面速度较慢,可根据直线的倾斜程度得到答案.【题目详解】当时间时,,故排除C,D;由于刚开始时速度较快,后面速度较慢,所以前段时间的直线的倾斜角更大.故选:A.【题目点拨】本题考查根据实际问题抽象出对应问题的函数图象,考查抽象概括能力,属于容易题.5、D【解题分析】由函数有零点,可求得,由函数的值域可求得,综合二者即可得到的取值范围.【题目详解】定义在上的函数,则,由函数有零点,所以,解得;由函数的值域,所以,解得;综上,的取值范围是故选:D6、D【解题分析】根据对数型函数恒过定点得到定点,再根据点在角的终边上,由三角函数的定义得,即可得到答案.【题目详解】由于函数(,且)的图象恒过定点,则,点,点在角的终边上,.故选:D.7、B【解题分析】在正方体ABCD﹣A1B1C1D1中,AC∥A1C1,所以为异面直线AC与A1D1所成的角,由此能求出结果.【题目详解】因为AC∥A1C1,所以为异面直线AC与A1D1所成的角,因为是等腰直角三角形,所以.故选:B【题目点拨】本题考查异面直线所成的角的求法,属于基础题.8、D【解题分析】设函数式为,代入点(4,2)得考点:幂函数9、C【解题分析】利用指数函数与对数函数的单调性即可得出【题目详解】∵a=22.5>1,<0,,∴a>c>b,故选C【题目点拨】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题10、A【解题分析】利用对数的运算可求解.【题目详解】,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】有两种形式的圆柱的展开图,分别求出底面半径和高,分别求出体积.【题目详解】圆柱的侧面展开图是边长为2a与a的矩形,当母线为a时,圆柱的底面半径是,此时圆柱体积是;当母线为2a时,圆柱的底面半径是,此时圆柱的体积是,综上所求圆柱的体积是:或,故答案为或;本题考查圆柱的侧面展开图,圆柱的体积,容易疏忽一种情况,导致错误.12、【解题分析】列方程组解得参数a、b,得到解析式后,即可求得的值.【题目详解】由对一切实数,均有可知,即解之得则,满足故故答案:13、【解题分析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【题目详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【题目点拨】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.14、①.②.【解题分析】根据对数函数过定点得过定点,再根据基本不等式“1”的用法求解即可.【题目详解】解:函数(且)由函数(且)向上平移1个单位得到,函数(且)过定点,所以函数过定点,即,所以,因为,所以所以,当且仅当,即时等号成立,所以的最小值为故答案为:;15、2【解题分析】先求出,再求的值即可【题目详解】解:由题意得,,所以,故答案为:216、【解题分析】把不等式x2﹣2x>0化为x(x﹣2)>0,求出解集即可【题目详解】不等式x2﹣2x>0可化为x(x﹣2)>0,解得x<0或x>2;∴不等式的解集为{x|x<0或x>2}故答案为【题目点拨】本题考查了一元二次不等式的解法与应用问题,是基础题目三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-1(2)-3【解题分析】(1)根号下是,开方后注意,而,从而所求值为.(2)利用诱导公式原式可以化简为,再分子分母同时除以,就可以得到一个关于的分式,代入其值就可以得到所求值为.解析:(1).(2).18、(1);(2)答案见解析.【解题分析】(1)由题设知对一切实数恒成立,根据二次函数的性质列不等式组求参数范围.(2)分类讨论法求一元二次不等式的解集.【题目详解】(1)由题设,对一切实数恒成立,当时,在上不能恒成立;∴,解得.(2)由,∴当时,解集为;当时,无解;当时,解集为;19、(1);(2)分钟;(3)见详解.【解题分析】(1)由只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,根据已知可得,,代入可求出的值;(2)由只投放一次个单位的洗衣液,可得,分、两种情况解不等式即可求解;(3)令,由题意求出此时的值并与比较大小即可.【题目详解】(1)因为,当两分钟时水中洗衣液的浓度为克/升时,可得,即,解得;(2)因为,所以,当时,,将两式联立解之得;当时,,将两式联立解之得,综上可得,所以若只投放一次个单位的洗衣液,则有效去污时间可达分钟;(3)当时,由题意,因为,所以在第分钟时洗衣液能起到有效去污的作用.【题目点拨】本题主要考查分段函数模型的选择和应用,其中解答本题的关键是正确理解水中洗衣液浓
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《DesignofMachineToolJig》2023-2024学年第一学期期末试卷
- 2025年浙江省安全员A证考试题库
- 牡丹繁育研发观光基地建设项目可行性研究报告-牡丹市场需求持续扩大
- 贵阳人文科技学院《草地植物分子生物学实验》2023-2024学年第一学期期末试卷
- 广州应用科技学院《创新创业论坛》2023-2024学年第一学期期末试卷
- 2025年河北省建筑安全员-C证(专职安全员)考试题库
- 中国农业-高考地理复习
- 《岩体力学性质》课件
- 《心绞痛的家庭急救》课件
- 形式与政策-课程报告
- 《小学生良好书写习惯培养的研究》中期报告
- 2025年四川成都市温江区市场监督管理局选聘编外专业技术人员20人历年管理单位笔试遴选500模拟题附带答案详解
- 手术室发生地震应急预案演练
- 配合、协调、服务方案
- 初中数学新课程标准(2024年版)
- 期末测试卷(一)2024-2025学年 人教版PEP英语五年级上册(含答案含听力原文无听力音频)
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 中华传统文化之戏曲瑰宝学习通超星期末考试答案章节答案2024年
- 装饰装修设备表
- 汉服娃衣创意设计与制作智慧树知到期末考试答案章节答案2024年四川文化产业职业学院
- 广东省中山市2023-2024学年四年级上学期期末数学试卷
评论
0/150
提交评论