青海省西宁市二十一中2024届高一上数学期末教学质量检测试题含解析_第1页
青海省西宁市二十一中2024届高一上数学期末教学质量检测试题含解析_第2页
青海省西宁市二十一中2024届高一上数学期末教学质量检测试题含解析_第3页
青海省西宁市二十一中2024届高一上数学期末教学质量检测试题含解析_第4页
青海省西宁市二十一中2024届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省西宁市二十一中2024届高一上数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,若直线与直线平行,则的值为A. B.C.或 D.或2.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.3.函数的定义域是()A. B.C. D.4.已知函数在上是增函数,则的取值范围是()A. B.C. D.5.已知集合,,若,则的值为A.4 B.7C.9 D.106.已知集合,则()A. B.C. D.7.若直线过点且倾角为,若直线与轴交于点,则点的坐标为()A. B.C. D.8.当时,若,则的值为A. B.C. D.9.设则()A. B.C. D.10.已知函数,则下列说法不正确的是A.的最小正周期是 B.在上单调递增C.是奇函数 D.的对称中心是二、填空题:本大题共6小题,每小题5分,共30分。11.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③12.___________.13.不等式的解集为_________________.14.已知,则___________.(用含a的代数式表示)15.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.16.已知幂函数在上是增函数,则实数m的值是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若,求的值;(2)若,且,求的值.18.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为万元,每生产万件,需另投入成本为.当年产量不足万件时,(万元);当年产量不小于万件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(万件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?并求出利润的最大值19.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位净化剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:小时)变化的函数关系式近似为.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用(1)若一次喷洒4个单位的净化剂,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(2)若第一次喷洒2个单位的净化剂,3小时后再喷洒2个单位的净化剂,设第二次喷洒小时后空气中净化剂浓度为(毫克/立方米),其中①求的表达式;②求第二次喷洒后的3小时内空气中净化剂浓度的最小值20.已知函数,,(1)求的解析式和最小正周期;(2)求在区间上的最大值和最小值21.已知函数的部分图象如图所示()求函数的解析式()求函数在区间上的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由a(a+1)﹣2=0,解得a.经过验证即可得出【题目详解】由a(a+1)﹣2=0,解得a=﹣2或1经过验证:a=﹣2时两条直线重合,舍去∴a=1故选B【题目点拨】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题2、A【解题分析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【题目详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.3、A【解题分析】利用对数函数的真数大于零,即可求解.【题目详解】由函数,则,解得,所以函数的定义域为.故选:A【题目点拨】本题考查了对数型复合函数的定义域,需熟记对数的真数大于零,属于基础题.4、C【解题分析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围【题目详解】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【题目点拨】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键5、A【解题分析】可知,或,所以.故选A考点:交集的应用6、C【解题分析】根据并集的定义计算【题目详解】由题意故选:C7、C【解题分析】利用直线过的定点和倾斜角写出直线的方程,求出与轴的交点,得出答案【题目详解】直线过点且倾角为,则直线方程为,化简得令,解得,点的坐标为故选:C【题目点拨】本题考查点斜式直线方程的应用,考查学生计算能力,属于基础题8、A【解题分析】分析:首先根据题中所给的角的范围,求得相应的角的范围,结合题中所给的角的三角函数值,结合角的范围,利用同角三角函数的平方关系式,求得相应的三角函数值,之后应用诱导公式和同角三角函数商关系,求得结果.详解:因为,所以,所以,因为,所以,所以,所以,所以答案是,故选A.点睛:该题考查的是有关三角恒等变换问题,涉及到的知识点有同角三角函数关系式中的平方关系和商关系,以及诱导公式求得结果.9、A【解题分析】利用中间量隔开三个值即可.【题目详解】∵,∴,又,∴,故选:A【题目点拨】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.10、A【解题分析】对进行研究,求出其最小正周期,单调区间,奇偶性和对称中心,从而得到答案.【题目详解】,最小正周期为;单调增区间为,即,故时,在上单调递增;定义域关于原点对称,,故为奇函数;对称中心横坐标为,即,所以对称中心为【题目点拨】本题考查了正切型函数的最小正周期,单调区间,奇偶性和对称中心,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、②、③【解题分析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.12、2【解题分析】利用换底公式及对数的性质计算可得;【题目详解】解:.故答案为:13、或.【解题分析】利用一元二次不等式的求解方法进行求解.【题目详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.14、【解题分析】利用换底公式化简,根据对数的运算法则求解即可【题目详解】因为,所以故答案为:.15、【解题分析】由图可知,16、1【解题分析】因为幂函数在上是增函数,所以,解得,又因为,所以.故填1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用诱导公式求出,由已知得出,再由齐次式即可求解.(2)由题意可得,,再由两角和的正切公式即可求解.【小问1详解】由已知,,得所以【小问2详解】由,,可知,,∴.∵,∴.而,∴.∴,∴.18、(1);(2)年产量为万件时,该厂在这一商品的生产中所获利润最大,利润的最大值为万元【解题分析】(1)由利润销售收入总成本写出分段函数的解析式即可;(2)利用配方法和基本不等式分别求出各段的最大值,再取两个中最大的即可.【题目详解】(1)当,时,当,时,(2)当,时,,当时,取得最大值(万元)当,时,当且仅当,即时等号成立即时,取得最大值万元综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元19、(1),(2)①(),②28毫克/立方米【解题分析】(1)根据已知可得,一次喷洒4个单位的净化剂,浓度,分类讨论解出即可(2)①由题意可得(),②由于可化为,然后利用基本不等式可求出其最小值【题目详解】解:(1)根据已知可得,一次喷洒4个单位的净化剂,浓度,则当时,由,得,所以,当时,由,得,,得,所以,综上,,所以一次喷洒4个单位的净化剂,则净化时间约达小时,(2)①由题意可知,第一次喷洒2个单位的净化剂,3小时后的浓度为(毫克/立方米),所以第二次喷洒小时后空气中净化剂浓度为(),②(),,当且仅当,即时取等号,所以第二次喷洒小时时空气中净化剂浓度达到最小值28毫克/立方米【题目点拨】关键点点睛:此题考查了函数的实际应用、分段函数的意义和性质、基本不等式、分类讨论的思想,考查分析问题的能力,解题的关键是正确理解题意,求出(),然后利用基本不等式求出其最小值,属于较难题20、(1),;(2)最大值2,最小值【解题分析】(1)先将代入,结合求出函数解析式,再用公式求出最小正周期.(2)根据,求出的范围,再求出的范围,即可得出在区间上的最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论