版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省安顺市第五中学2024届数学九年级第一学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2) B.(4,3) C.(6,2) D.(6,3)2.为了得到函数的图象,可以将函数的图象()A.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度B.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度C.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度D.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度3.函数中,自变量的取值范围是()A. B. C. D.x≤1或x≠04.平行四边形四个内角的角平分线所围成的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形5.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④6.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)(
)A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里7.如图,在Rt△ABC中BC=2,以BC的中点O为圆心的⊙O分别与AB,AC相切于D,E两点,的长为()A. B. C.π D.2π8.某市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所数据120000000用科学记数法表示为()A.12×108 B.1.2×108 C.1.2×109 D.0.12×1099.关于二次函数y=2x2+4,下列说法错误的是()A.它的开口方向向上 B.当x=0时,y有最大值4C.它的对称轴是y轴 D.顶点坐标为(0,4)10.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°11.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和12.下列各式运算正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14.将方程化成一般形式是______________.15.如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE=2,BE=4,则tan∠ABD=_____.16.在锐角△ABC中,若sinA=,则∠A=_______°17.计算:________.18.在平面坐标系中,正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,正方形的面积为______,延长交轴于点,作正方形,……按这样的规律进行下去,正方形的面积为______.三、解答题(共78分)19.(8分)(1)如图1,在中,点在边上,且,,求的度数;(2)如图2,在菱形中,,请设计三种不同的分法(只要有一条分割线段不同就视为不同分法),将菱形分割成四个三角形,使得每个三角形都是等腰三角形(不要求写画法,要求画出分割线段,标出所得三角形内角的度数).20.(8分)将矩形如图放置在平面直角坐标系中,为边上的一个动点,过点作交边于点,且,的长是方程的两个实数根,且.(1)设,,求与的函数关系(不求的取值范围);(2)当为的中点时,求直线的解析式;(3)在(2)的条件下,平面内是否存在点,使得以,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(8分)解方程:22.(10分)已知二次函数中,函数与自变量的部分对应值如下表:············(1)求该二次函数的表达式;(2)当时,的取值范围是.23.(10分)如图,在中,点在边上,且,已知,.(1)求的度数;(2)我们把有一个内角等于的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求的长.24.(10分)请阅读下面材料:问题:已知方程x1+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的一半.解:设所求方程的根为y,y=,所以x=1y把x=1y代入已知方程,得(1y)1+1y-3=0化简,得4y1+1y-3=0故所求方程为4y1+1y-3=0这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”解决下列问题:(1)已知方程1x1-x-15=0,求一个关于y的一元二次方程,使它的根是已知方程根的相反数,则所求方程为:_________.(1)已知方程ax1+bx+c=0(a≠0)有两个不相等的实数根,求一个关于y的一元二次方程,使它的根比已知方程根的相反数的一半多1.25.(12分)如图,△ABC中,AB=8,AC=6.(1)请用尺规作图的方法在AB上找点D,使得△ACD∽△ABC(保留作图痕迹,不写作法)(2)在(1)的条件下,求AD的长26.如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:AB2=AE·AD;(2)若AE=2,ED=4,求图中阴影的面积.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据点A的坐标变化可以得出线段AB是向右平移一个单位长度,向上平移一个单位长度,然后即可得出点B'坐标.【题目详解】∵点A(1,0)平移后得到点A'(2,1),∴向右平移了一个单位长度,向上平移了一个单位长度,∴点B(3,2)平移后的对应点B'坐标为(4,3).故选:B.【题目点拨】本题主要考查了直角坐标系中线段的平移,熟练掌握相关方法是解题关键.2、A【分析】先求出两个二次函数的顶点坐标,然后根据顶点坐标即可判断对称或平移的方式.【题目详解】的顶点坐标为的顶点坐标为∴点先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度可得到点故选A【题目点拨】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.3、D【解题分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【题目详解】根据题意得,且,
解得:且.
故选:D.【题目点拨】本题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.4、B【解题分析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD是平行四边形,
∴∠BAD+∠ABC=180°,
∵AE、BE分别是∠BAD、∠ABC的平分线,
∴∠BAE+∠ABE=∠BAD+∠ABC=90°,
∴∠FEH=90°,
同理可求∠F=90°,∠FGH=90°,∠H=90°,
∴四边形EFGH是矩形.故选B.点睛:本题考查了矩形的判定,平行四边形的邻角互补,角平分线的定义,注意整体思想的利用.5、C【解题分析】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△PAO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正确;∵AO:OP:PA=r:r:r=1::.∴④正确;说法正确的是③④,故选C.6、B【解题分析】根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE=
x,AB=BE=CE=2x,由AC=AD+DE+EC=2
x+2x=30,解之即可得出答案.【题目详解】根据题意画出图如图所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
设BD=x,
在Rt△ABD中,
∴AD=DE=
x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2
x+2x=30,
∴x=
=
≈5.49,
故答案选:B.【题目点拨】考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.7、B【分析】连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.【题目详解】连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴==故选B【题目点拨】此题考查切线的性质,弧长的计算,解题关键在于作辅助线8、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】120000000=1.2×108,故选:B.【题目点拨】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、B【分析】根据二次函数的图象及性质与各项系数的关系,逐一判断即可.【题目详解】解:A.因为2>0,所以它的开口方向向上,故不选A;B.因为2>0,二次函数有最小值,当x=0时,y有最小值4,故选B;C.该二次函数的对称轴是y轴,故不选C;D.由二次函数的解析式可知:它的顶点坐标为(0,4),故不选D.故选:B.【题目点拨】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.10、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【题目详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选D.【题目点拨】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.11、B【解题分析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.12、D【分析】逐一对选项进行分析即可.【题目详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【题目点拨】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.二、填空题(每题4分,共24分)13、﹣1.【分析】根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.【题目详解】解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.【题目点拨】本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14、【分析】先将括号乘开,再进行合并即可得出答案.【题目详解】x2-6x+4+x+1=0,.故答案为:.【题目点拨】本题考查了一次二次方程的化简,注意变号是解决本题的关键.15、【分析】根据圆周角定理得到∠DAC=∠B,得到△ADE∽△BDA,根据相似三角形的性质求出AD,根据正切的定义解答即可.【题目详解】∵点D是弧AC的中点,∴,∴∠DAC=∠ABD,又∵∠ADE=∠BDA,∴△ADE∽△BDA,∴,即,解得:AD=2,∵AB为⊙O的直径,∴∠ADB=90°,∴tan∠ABD=tan∠DAE.故答案为:.【题目点拨】本题考查了相似三角形的判定和性质、圆周角定理、正切的定义,掌握相似三角形的判定定理和性质定理是解答本题的关键.16、30°【分析】由题意直接利用特殊锐角三角函数值即可求得答案.【题目详解】解:因为sin30°=,且△ABC是锐角三角形,所以∠A=30°.故填:30°.【题目点拨】本题考查特殊锐角三角函数值,熟记特殊锐角三角函数值是解题的关键.17、【分析】根据特殊角的三角函数值直接书写即可.【题目详解】故答案为:.【题目点拨】本题考查了特殊角的三角函数值,牢固记忆是解题的关键.18、11.25【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,再求出AB,BA1,面积即可求出;求出第2个正方形的边长;再求出第3个正方形边长;依此类推得出第2019个正方形的边长,求出面积即可.【题目详解】∵四边形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴,
∵AB=AD=,
∴BA1=,
∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,第2个正方形A1B1C1C的面积()2=11.25
同理第3个正方形的边长是=()2,
第4个正方形的边长是()3,,
第2019个正方形的边长是()2018,面积是[()2018]2=5×()2018×2=故答案为:(1)11.25;(2)【题目点拨】本题考查了正方形的性质,相似三角形的判定与性质,依次求出正方形的边长是解题的关键.三、解答题(共78分)19、(1);(2)详见解析.【分析】(1)设,利用等边对等角,可得,,根据三角形外角的性质可得,再根据等边对等角和三角形的内角和公式即可求出x,从而求出∠B.(2)根据等腰三角形的定义和判定定理画图即可.【题目详解】证明:(1)设∵∴又∵∴∴又∵∴又∵∴解出:∴(2)根据等腰三角形的定义和判定定理,画出如下图所示,(任选其三即可).【题目点拨】此题考查的是等腰三角形的性质及判定,掌握等边对等角、等角对等边和方程思想是解决此题的关键.20、(1);(2)或;(3)存在.,,.【分析】(1)利用因式分解法解出一元二次方程,得到OA、OB的长,证明△AOE∽△ECD,根据相似三角形的性质列出比例式,整理得到y与x的函数关系;(2)列方程求出OE,利用待定系数法求出直线AE的解析式;(3)根据平行四边形的性质、坐标与图形性质解答.【题目详解】(1),,∴解得,.∵,∴,.∵,∴∠AEO+∠DEC=90,又∵∠AEO+∠OAE=90,∴∠OAE=∠CED,又∠AOE=∠ECD=90,∴,∴,∴,∴.(2)当为的中点时,.∵,∴.解得,.当时,设直线的解析式为,把A(0,8),E(4,0)代入得解得,∴;当时,设直线的解析式为,把A(0,8),E(8,0)代入得解得,∴直线的解析式为或.(3)当点F在线段OA上时,FA=BD=4,∴OF=4,即点F的坐标为(0,4),当点F在线段OA的延长线上时,FA=BD=4,∴OF=12,即点F的坐标为(0,12),当点F在线段BC右侧、AB∥DF时,DF=AB=12,∴点F的坐标为(24,4),综上所述,以A,D,B,F为顶点的四边形为平行四边形时,点F的坐标为(0,4)或(0,12)或(24,4).【题目点拨】本题考查的是一次函数的性质、相似三角形的判定和性质,掌握待定系数法求一次函数解析式的一般步骤、相似三角形的判定定理和性质定理是解题的关键.21、(1),;(2)【分析】(1)先移项,再利用配方法求解即可.(2)合并同类项,再利用配方法求解即可.【题目详解】(1)解得,(2)解得【题目点拨】本题考查了一元二次方程的计算,掌握利用配方法求方程的解是解题的关键.22、(1)或;(2)或【分析】(1)根据抛物线的对称性从表格中得出其顶点坐标,设出顶点式,任意代入一个非顶点的点的坐标即可求解.(2)结合表格及函数解析式及其增减性解答即可.【题目详解】(1)由题意得顶点坐标为.设函数为.由题意得函数的图象经过点,所以.所以.所以两数的表达式为(或);由所给数据可知当时,有最小值,二次函数的对称轴为.又由表格数据可知当时,对应的的范围为或.【题目点拨】本题考查的是确定二次函数的表达式及二次函数的性质,掌握二次函数的对称性及增减性是关键.23、(1);(2)①有三个:,理由见解析;②.【分析】(1)设,根据题意得到,由三角形的外角性质,即可求出x的值,从而得到答案;(2)①根据黄金三角形的定义,即可得到答案;②由①可知,是黄金三角形,则根据比例关系,求出,然后求出AD的长度.【题目详解】解:(1),则,设,则,又,,,解得:,;(2)①有三个:是黄金三角形;或,是黄金三角形;或,,又,,,是黄金三角形;②∵是黄金三角形,,,,,.【题目点拨】本题考查了等腰三角形的性质以及黄金三角形的定义,三角形的内角和定理以及三角形的外角性质,解题的关键是熟练掌握等腰三角形的性质,三角形的外角性质.24、(1)1y1+y-15=0;(1).【分析】(1)利用题中解法,设所求方程的根为y,则y=-x,所以x=-y,然后把x=-y代入已知方程整理后即可得到结果;(1)设所求方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024医疗废弃物处置中心建设及运营管理合同3篇
- 2024年度科技创新成果赠送与应用合同3篇
- 《侧链含偶氮苯基团的聚酰亚胺的制备与性能研究》
- 冷藏车运输职业素养与职业道德考核试卷
- 2024年度影视特效顾问团队委托创作合同样本3篇
- 《从日中谚语看两国人的自然观》
- 《写实与写意的“交响”》
- 2024年度教育培训机构用工标准及权益保障协议3篇
- 头痛病康复训练-洞察分析
- 2024年一人公司股权变更与知识产权保护及研发合作合同3篇
- 深圳市 2022-2023 学年七年级上学期期末地理试题【带答案】
- 2024年黑龙江省齐齐哈尔市中考数学试题
- 2024年长沙电力职业技术学院单招职业技能测试题库附答案
- 美学导论智慧树知到期末考试答案章节答案2024年山东工艺美术学院
- 装修设计招标评标办法
- 乒乓球校队选拔方案
- 热水供水系统运营维护服务投标方案(技术方案)
- 现实与理想-西方古典绘画 课件-2023-2024学年高中美术人美版(2019)美术鉴赏
- 快递安全教育培训课件
- 迎新年卡拉OK比赛主持词
- 造口伤口工作总结
评论
0/150
提交评论