四川省成都市成华区2024届九年级数学第一学期期末复习检测试题含解析_第1页
四川省成都市成华区2024届九年级数学第一学期期末复习检测试题含解析_第2页
四川省成都市成华区2024届九年级数学第一学期期末复习检测试题含解析_第3页
四川省成都市成华区2024届九年级数学第一学期期末复习检测试题含解析_第4页
四川省成都市成华区2024届九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市成华区2024届九年级数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.参加一次聚会的每两人都握了一次手,所有人共握手10

次,若共有

x

人参加聚会,则根据题意,可列方程()A. B. C. D.2.下列方程中是关于的一元二次方程的是()A. B. C., D.3.如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是()A. B. C. D.4.一元二次方程的根的情况是()A.有两个相等的实根 B.有两个不等的实根 C.只有一个实根 D.无实数根5.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米6.在同一时刻,身高米的小强在阳光下的影长为米,一棵大树的影长为米,则树的高度为()A.米 B.米 C.米 D.米7.关于x的一元二次方程有两个实数根,则k的取值范围在数轴上可以表示为()A. B.C. D.8.下列几何体中,同一个几何体的主视图与左视图不同的是()A. B. C. D.9.关于x的一元二次方程x2+bx+c=0的两个实数根分别为﹣2和3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6C.b=5,c=﹣6 D.b=﹣1,c=610.如图,二次函数的图象与轴交于点(4,0),若关于的方程在的范围内有实根,则的取值范围是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是_____.12.从一副扑克牌中的13张黑桃牌中随机抽取一张,它是王牌的概率为____.13.已知函数y=kx2﹣2x+1的图象与x轴只有一个有交点,则k的值为_____.14.已知函数的图象如图所示,若矩形的面积为,则__________.15.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_____.16.关于x的方程的两个根是﹣2和1,则nm的值为_____.17.如图,,,则的度数是__________.18.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=_____.三、解答题(共66分)19.(10分)如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.(1)、求证:△ABE≌△ADF;(2)、若等边△AEF的周长为6,求正方形ABCD的边长.20.(6分)如图,在Rt△ABC中,∠C=90°,点O是斜边AB上一定点,到点O的距离等于OB的所有点组成图形W,图形W与AB,BC分别交于点D,E,连接AE,DE,∠AED=∠B.(1)判断图形W与AE所在直线的公共点个数,并证明.(2)若,,求OB.21.(6分)某商场购进了一批名牌衬衫,平均每天可售出件,每件盈利元为了尽快减少库存,商场决定采取适当的降价措施.调查发现,如果这种衬衫的售价每降低元,那么该商场平均每天可多售出件.(1)若该商场计划平均每天盈利元,则每件衬衫应降价多少元?(2)该商场平均每天盈利能否达到元?22.(8分)如图,以为直径作半圆,点是半圆弧的中点,点是上的一个动点(点不与点、重合),交于点,延长、交于点,过点作,垂足为.(1)求证:是的切线;(2)若的半径为1,当点运动到的三等分点时,求的长.23.(8分)一个不透明的布袋里装有3个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,求出两次都摸到白球的概率.24.(8分)足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.(1)请直接写出与之间的函数关系式和自变量的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?25.(10分)将一副直角三角板按右图叠放.(1)证明:△AOB∽△COD;(2)求△AOB与△DOC的面积之比.26.(10分)在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).(1)tan∠OAB=;(2)在第一象限内画出△OA'B',使△OA'B'与△OAB关于点O位似,相似比为2:1;(3)在(2)的条件下,S△OAB:S四边形AA′B′B=.

参考答案一、选择题(每小题3分,共30分)1、C【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.【题目详解】设人参加了这次聚会,则每个人需握手次,依题意,可列方程.故选C.【题目点拨】本题主要考查一元二次方程的应用.2、A【分析】根据一元二次方程的定义解答.【题目详解】A、是一元二次方程,故A正确;

B、有两个未知数,不是一元二次方程,故B错误;

C、是分式方程,不是一元二次方程,故C正确;

D、a=0时不是一元二次方程,故D错误;

故选:A.【题目点拨】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.3、D【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【题目详解】解:旋转角是故选:D.【题目点拨】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.4、D【分析】先求出的值,再进行判断即可得出答案.【题目详解】解:一元二次方程x2+2020=0中,

=0-4×1×2020<0,

故原方程无实数根.

故选:D.【题目点拨】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)>0⇔方程有两个不相等的实数根;(2)=0⇔方程有两个相等的实数根;(3)<0⇔方程没有实数根.5、C【解题分析】解:∵sin∠C=,∴AB=AC•sin∠C=200sin20°.故选C.6、D【分析】根据在同一时刻,物高和影长成正比,由已知列出比例式即可求得结果.【题目详解】解:∵在同一时刻,∴小强影长:小强身高=大树影长:大树高,即0.8:1.6=4.8:大树高,解得大树高=9.6米,故选:D.【题目点拨】本题考查了相似三角形在测量高度是的应用,把实际问题抽象到相似三角形中,利用相似三角形的性质解决问题是解题的关键是.7、B【分析】利用根的判别式和题意得到,求出不等式的解集,最后在数轴上表示出来,即可得出选项.【题目详解】解:∵关于x的方程有两个实数根,∴,解得:,在数轴上表示为:,故选:B.【题目点拨】本题考查了在数轴上表示不等式的解集,根的判别式的应用,注意:一元二次方程(为常数)的根的判别式为.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.特别注意:当时,方程有两个实数根,本题主要应用此知识点来解决.8、A【分析】主视图、左视图、俯视图是分别从正面、左侧面、上面看,得到的图形,根据要求判断每个立体图形对应视图是否不同即可.【题目详解】解:A.圆的主视图是矩形,左视图是圆,故两个视图不同,正确.B.正方体的主视图与左视图都是正方形,错误.C.圆锥的主视图和俯视图都是等腰三角形,错误.D.球的主视图与左视图都是圆,错误.故选:A【题目点拨】简单几何体的三视图,此类型题主要看清题目要求,判断的是哪种视图即可.9、B【分析】根据一元二次方程根与系数的关系得到﹣2+3=﹣b,﹣2×3=c,即可得到b与c的值.【题目详解】由一元二次方程根与系数的关系得:﹣2+3=﹣b,﹣2×3=c,∴b=﹣1,c=﹣6故选:B.【题目点拨】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0的两个根满足,是解题的关键.10、B【分析】将点(1,0)代入函数解析式求出b=1,即要使在的范围内有实根,即要使在的范围内有实根,即要使二次函数与一次函数y=t在的范围内有交点,求出时,二次函数值的范围,写出t的范围即可.【题目详解】将x=1代入函数解析式可得:0=-16+1b,解得b=1,二次函数解析式为:,要使在的范围内有实根,即要使二次函数与一次函数y=t在的范围内有交点,二次函数对称轴为x=2,且当x=2时,函数最大值y=1,x=1或x=3时,y=3,3<y≤1.3<t≤1.故选:B.【题目点拨】本题主要考查二次函数与一元二次方程之间的关系,数形结合,将方程有实根的问题转化为函数的交点问题是解题关键.二、填空题(每小题3分,共24分)11、y=2x﹣1【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(4,0),B(0,2),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【题目详解】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO+∠BAO=∠BAO+∠CAD,∴∠ABO=∠CAD,在△ACD和△BAO中,∴△ACD≌△BAO(AAS)∴AD=OB=2,CD=OA=4,∴C(6,4)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得,∴∴直线AC的解析式为y=2x﹣1.故答案为:y=2x﹣1.【题目点拨】本题是几何图形旋转的性质与待定系数法求一次函数解析式的综合题,求得C的坐标是解题的关键,难度中等.12、1【分析】根据是王牌的张数为1可得出结论.【题目详解】∵13张牌全是黑桃,王牌是1张,∴抽到王牌的概率是1÷13=1,故答案为:1.【题目点拨】本题考查了概率的公式计算,熟记概率=所求情况数与总情况数之比是解题的关键.13、0或1.【分析】当k=0时,函数为一次函数,满足条件;当k≠0时,利用判别式的意义得到当△=0时抛物线与x轴只有一个交点,求出此时k的值即可.【题目详解】当k=0时,函数解析式为y=﹣2x+1,此一次函数与x轴只有一个交点;当k≠0时,△=(﹣2)2﹣4k=0,解得k=1,此时抛物线与x轴只有一个交点,综上所述,k的值为0或1.故答案为0或1.【题目点拨】本题考查了抛物线与x轴的交点问题,注意要分情况讨论.14、-6【分析】根据题意设AC=a,AB=b解析式为y=A点的横坐标为-a,纵坐标为b,因为AB*AC=6,k=xy=-AB*AC=-6【题目详解】解:由题意得设AC=a,AB=b解析式为y=∴AB*AC=ab=6A(-a,b)b=∴k=-ab=-6【题目点拨】此题主要考查了反比例函数与几何图形的结合,注意A点的横坐标的符号.15、2【分析】设袋子中红球有x个,求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【题目详解】设袋子中红球有x个,根据题意,得:,解得:x=2,所以袋中红球有2个,故答案为2【题目点拨】此题考查概率公式的应用,解题关键在于求出摸到红球的频率16、﹣1【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入nm中即可求出结论.【题目详解】解:∵关于x的方程的两个根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案为:﹣1.【题目点拨】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.17、【分析】根据三角形外角定理求解即可.【题目详解】∵,且∴故填:.【题目点拨】本题主要考查三角形外角定理,熟练掌握定理是关键.18、2【题目详解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2,故答案为2.三、解答题(共66分)19、(1)证明见解析;(2).【解题分析】试题分析:(1)根据四边形ABCD是正方形,得出AB=AD,∠B=∠D=90°,再根据△AEF是等边三角形,得出AE=AF,最后根据HL即可证出△ABE≌△ADF;(2)根据等边△AEF的周长是6,得出AE=EF=AF的长,再根据(1)的证明得出CE=CF,∠C=90°,从而得出△ECF是等腰直角三角形,再根据勾股定理得出EC的值,设BE=x,则AB=x+,在Rt△ABE中,AB2+BE2=AE2,求出x的值,即可得出正方形ABCD的边长.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵AB=AD,AE=AF∴Rt△ABE≌Rt△ADF;(2)∵等边△AEF的周长是6,∴AE=EF=AF=2,又∵Rt△ABE≌Rt△ADF,∴BE=DF,∴CE=CF,∠C=90°,即△ECF是等腰直角三角形,由勾股定理得CE2+CF2=EF2,∴EC=,设BE=x,则AB=x+,在Rt△ABE中,AB2+BE2=AE2,即(x+)2+x2=4,解得x1=或x2=(舍去),∴AB=+=,∴正方形ABCD的边长为.考点:1.正方形的性质;2.全等三角形的判定与性质;20、(2)有一个公共点,证明见解析;(2).【分析】(2)先根据题意作出图形W,再作辅助线,连接OE,证明AE是圆O的切线即可;(2)先利用解直角三角形的知识求出CE=2,从而求出BE=2.再由AC∥DE得出,把各线段的长代入即可求出OB的值.【题目详解】(2)判断有一个公共点证明:连接OE,如图.∵BD是⊙O的直径,∴∠DEB=90°.∵OE=OB,∴∠OEB=∠B.又∵∠AED=∠B,∴∠AED=∠OEB.∴∠AEO=∠AED+∠DEO=∠OEB+∠DEO=∠DEB=90°.∴AE是⊙O的切线.∴图形W与AE所在直线有2个公共点.(2)解:∵∠C=90°,,,∴AC=2,.∵∠DEB=90°,∴AC∥DE.∴∠CAE=∠AED=B.在Rt△ACE中,∠C=90°,AC=2,∴CE=2.∴BE=2.∵AC∥DE∴.∴,∴.【题目点拨】本题考查了圆的综合知识,掌握相关知识并灵活运用是解题的关键.21、(1)每件衬衫应降价元;(2)商场平均每天盈利不能达到元.【分析】(1)设每件衬衫应降价元,根据售价每降低元,那么该商场平均每天可多售出件,利用利润=单件利润×数量列方程求出x的值即可;(2)假设每件衬衫应降价元,利润能达到2500元,根据题意可得关于x的一元二次方程,根据一元二次方程的判别式即可得答案.【题目详解】(1)设每件衬衫应降价元,则每件盈利元,每天可以售出件由题意得,即解得,∵要尽快减少库存,∴=,答:若该商场计划平均每天盈利元,每件衬衫应降价元.(2)假设每件衬衫应降价元,利润能达到2500元,∴,整理得:,∵,∴方程无解,∴商场平均每天盈利不能达到元.【题目点拨】本题考查一元二次方程的应用,正确得出降价和销售量的关系,然后以利润为等量关系列方程是解题关键.22、(1)详见解析;(2)或【分析】(1)连接,根据同弧所对的圆周角相等、直径所对的圆周角等于90°和等弧所对的弦相等可得:,,,从而证出≌,然后根据等腰三角形的性质即可求出∠ACF和∠ACO,从而求出∠OCF,即可证出结论;(2)先根据等腰直角三角形的性质求出AC、BC,再根据一个弧有两个三等分点分类讨论:情况一:当点为靠近点的三等分点时,根据三等分点即可求出,再根据锐角三角函数即可求出CE,从而求出AE;情况二:当点为靠近点的三等分点时,根据三等分点即可求出,从而求出AP,再推导出∠PDE=30°,设,用表示出DE、CE和AE的长,从而利用勾股定理列出方程即可求出,从而求出AE.【题目详解】(1)证明:连接∵为的直径∴∴根据同弧所对的圆周角相等可得,又∵是的中点∴∴在与中∴≌∴又∵∴平分∴∵,为的中点∴平分∴∴∴∴为的切线(2)证明:如图2∵的半径为1∴又∵,∴情况一:如图2当点为靠近点的三等分点时∵点是的三等分点∴∴在Rt△BCE中,∴情况二:如图3当点为靠近点的三等分点时∵点是的三等分点∴∴∴又∵∴又∵,∴∴∴∴设,则∴∴又∵∴即解出:或(应小于,故舍去)∴综上所述:或【题目点拨】此题考查的是圆的基本性质、圆周角定理、切线的判定、等腰三角形的性质和解直角三角形,掌握同弧所对的圆周角相等、直径所对的圆周角是90°、切线的判定定理和用勾股定理和锐角三角函数解直角三角形是解决此题的关键.23、(1)红球的个数为2个;(2).【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;

(2)画出树形图,即可求出两次摸到的球都是白球的概率.【题目详解】解:(1)设红球的个数为,由题意可得:,解得:,经检验是方程的根,即红球的个数为2个;(2)画树状图如下:两次都摸到白球的概率:.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)(2)当x=52时,w有最大值为2640.【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;

(2)利用利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【题目详解】(1)由题意得:y=300-10(x-44)=-10x+740,

每本进价40元,且获利不高于30%,即最高价为52元,即x≤52,故:44

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论