辽宁省大连市第七十六中学2024届数学九年级第一学期期末复习检测模拟试题含解析_第1页
辽宁省大连市第七十六中学2024届数学九年级第一学期期末复习检测模拟试题含解析_第2页
辽宁省大连市第七十六中学2024届数学九年级第一学期期末复习检测模拟试题含解析_第3页
辽宁省大连市第七十六中学2024届数学九年级第一学期期末复习检测模拟试题含解析_第4页
辽宁省大连市第七十六中学2024届数学九年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连市第七十六中学2024届数学九年级第一学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()A. B. C. D.2.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A. B. C. D.3.不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是()A. B. C. D.4.如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()A.S1=S2 B.S1<S2 C.S1=S2 D.S1>S25.如图,在中,,,,以边的中点为圆心作半圆,使与半圆相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是()A.8 B.9 C.10 D.126.如图,在矩形中,,,以为直径作.将矩形绕点旋转,使所得矩形的边与相切,切点为,边与相交于点,则的长为()A.2.5 B.1.5 C.3 D.47.如图,关于抛物线,下列说法错误的是()A.顶点坐标为(1,)B.对称轴是直线x=lC.开口方向向上D.当x>1时,y随x的增大而减小8.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.29.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n=()A.0 B.3 C.16 D.910.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.2 B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.12.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.13.已知线段c是线段、的比例中项,且,,则线段c的长度为______.14.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为___________.15.在平面直角坐标系中,反比例函数的图象经过点,,则的值是__________.16.一个扇形的弧长是,面积是,则这个扇形的圆心角是___度.17.直角三角形的直角边和斜边分别是和,则此三角形的外接圆半径长为__________.18.我军侦察员在距敌方120m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是_______m.三、解答题(共66分)19.(10分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.请根据图表中所提供的信息,完成下列问题:(1)表中________,________,样本成绩的中位数落在证明见解析________范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在范围内的学生有多少人?20.(6分)解方程组:21.(6分)如图,在平面直角坐标系中,的三个顶点坐标分别为、、.(1)点关于坐标原点对称的点的坐标为______;(2)将绕着点顺时针旋转,画出旋转后得到的;(3)在(2)中,求边所扫过区域的面积是多少?(结果保留).(4)若、、三点的横坐标都加3,纵坐标不变,图形的位置发生怎样的变化?22.(8分)解下列方程:(1)x2﹣6x+9=0;(2)x2﹣4x=12;(3)3x(2x﹣5)=4x﹣1.23.(8分)如图,在四边形ABCD中,AB⊥AD,=,对角线AC与BD交于点O,AC=10,∠ABD=∠ACB,点E在CB延长线上,且AE=AC.(1)求证:△AEB∽△BCO;(2)当AE∥BD时,求AO的长.24.(8分)已知:如图,在△ABC中,AB=AC,点D、E分别在边BC、DC上,AB2=BE·DC,DE:EC=3:1,F是边AC上的一点,DF与AE交于点G.(1)找出图中与△ACD相似的三角形,并说明理由;(2)当DF平分∠ADC时,求DG:DF的值;(3)如图,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.25.(10分)如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.26.(10分)如图1,△ABC是等边三角形,点D在BC上,BD=2CD,点F是射线AC上的动点,点M是射线AD上的动点,∠AFM=∠DAB,FM的延长线与射线AB交于点E,设AM=x,△AME与△ABD重叠部分的面积为y,y与x的函数图象如图2所示(其中0<x≤m,m<x<n,x≥n时,函数的解析式不同).(1)填空:AB=_______;(2)求出y与x的函数关系式,并求出x的取值范围.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据主视图是从物体正面看所得到的图形判断即可.【题目详解】A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形.故选:D.【题目点拨】本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2、D【解题分析】根据点与圆的位置关系判断得出即可.【题目详解】∵点P在圆内,且⊙O的半径为4,

∴0≤d<4,

故选D.【题目点拨】本题考查了点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r.3、A【解题分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【题目详解】因为共有个球,红球有个,所以,取出红球的概率为,故选A.【题目点拨】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.4、D【分析】由正六边形的长得到的长,根据扇形面积公式=×弧长×半径,可得结果.【题目详解】由题意:的长度==24,∴S2=×弧长×半径=×24×6=72,∵正六边形ABCDEF的边长为6,∴为等边三角形,∠ODE=60°,OD=DE=6,过O作OG⊥DE于G,如图:∴,∴,∴S1>S2,故选:D.【题目点拨】本题考查了正多边形和圆、正六边形的性质、扇形面积公式;熟练掌握正六边形的性质,求出弧长是解决问题的关键.5、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【题目详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,

此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,

∵AB=20,AC=8,BC=6,

∴AB2=AC2+BC2,∴∠C=90°,

∵∠OP2A=90°,∴OP2∥BC.

∵O为AB的中点,∴P2C=P2A,OP2=BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=AC=4=OQ2.

∴P2Q2最小值为OQ2-OP2=4-2=2,

如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,

P2Q2最大值=AO+OQ2=5+4=9,

∴PQ长的最大值与最小值的和是20.

故选:C.【题目点拨】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.6、D【分析】连接OE,延长EO交CD于点G,作于点H,通过旋转的性质和添加的辅助线得到四边形和都是矩形,利用勾股定理求出的长度,最后利用垂径定理即可得出答案.【题目详解】连接OE,延长EO交CD于点G,作于点H则∵矩形ABCD绕点C旋转所得矩形为∴四边形和都是矩形,∵四边形都是矩形即故选:D.【题目点拨】本题主要考查矩形的性质,勾股定理及垂径定理,掌握矩形的性质,勾股定理及垂径定理是解题的关键.7、D【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x>1时,y随x的增大而增大,根据结论即可判断选项.【题目详解】解:∵抛物线y=(x-1)2-2,A、因为顶点坐标是(1,-2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>1时,y随x的增大而增大,故说法错误.故选D.8、C【解题分析】根据根与系数的关系可得出两根之和为4,从而得出另一个根.【题目详解】设方程的另一个根为m,则1+m=4,∴m=3,故选C.【题目点拨】本题考查了一元二次方程根与系数的关系.解答关于x的一元二次方程x2-4x+c=0的另一个根时,也可以直接利用根与系数的关系x1+x2=-解答.9、C【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m+1.故设抛物线解析式为y=(x+m+1)2,直接将A(m,n)代入,通过解方程来求n的值.【题目详解】∵抛物线y=x2+bx+c过点A(m,n),B(m+8,n),∴对称轴是x==m+1.又∵抛物线y=x2+bx+c与x轴只有一个交点,∴设抛物线解析式为y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故选:C.【题目点拨】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.10、D【分析】根据已知条件,先求Rt△AED的面积,再证明△ECD的面积与它相等.【题目详解】如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=EDAE,S△ECD=EDCF.∴S△AED=S△CDE∵AE=1,DE=,∴△ECD的面积是.故答案选:D.【题目点拨】本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.二、填空题(每小题3分,共24分)11、4【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得△DEF∽△ACB,根据相似三角形的性质可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AG=AH=x,BN=BM=y,根据线段的和差表示出AC、BC、AB的长,进而根据AC∶CB∶BA=3∶4∶1列出比例式,继而求出x、y的值,进而即可求解△ABC的周长.【题目详解】∵AC∶CB∶BA=3∶4∶1,设AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,设⊙O沿着△ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,∴DG∥EP,EQ∥FN,FM∥DH,∵⊙O的半径为1∴DG=DH=PE=QE=FN=FM=1,则有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,设DE=3k(k>0),则EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周长为4.故答案为4.【题目点拨】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.12、【题目详解】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以所围成的圆锥的高=考点:圆锥的计算.13、6【解题分析】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故答案为6.14、(,)【解题分析】过A′作A′C⊥x轴于C,根据旋转得出∠AOA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C,解直角三角形求出OC和A′C,即可得出答案.【题目详解】如图,过A′作A′C⊥x轴于C,∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×=,∴A′的坐标为(,-).故答案为:(,).【题目点拨】本题考查的知识点是坐标与图形变化-旋转,解题的关键是熟练的掌握坐标与图形变化-旋转.15、【分析】将点B的坐标代入反比例函数求出k,再将点A的坐标代入计算即可;【题目详解】(1)将代入得,k==-6,所以,反比例函数解析式为,将点的坐标代入得所以m=,故填:.【题目点拨】此题主要考查反比例函数的图像与性质,解题的关键是熟知待定系数法求解析式.16、150【分析】根据弧长公式计算.【题目详解】根据扇形的面积公式可得:,解得r=24cm,再根据弧长公式,解得.故答案为:150.【题目点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式,弧长公式.17、1【分析】根据直角三角形外接圆的半径等于斜边的一半解答即可.【题目详解】解:根据直角三角形的外接圆的半径是斜边的一半,∵其斜边为16∴其外接圆的半径是1;故答案为:1.【题目点拨】此题要熟记直角三角形外接圆的半径公式:外接圆的半径等于斜边的一半.18、1【分析】如图(见解析),过点A作,交BC于点F,利用平行线分线段成比例定理推论求解即可.【题目详解】如图,过点A作,交BC于点F由题意得则(平行线分线段成比例定理推论)即解得故答案为:1.【题目点拨】本题考查了平行线分线段成比例定理推论,读懂题意,将所求问题转化为利用平行线分线段成比例定理推论的问题是解题关键.三、解答题(共66分)19、(1)8,20,;(2)见解析;(3)200人【分析】(1)根据题意和统计图可以求得a、b的值,并得到样本成绩的中位数所在的取值范围;(2)根据b的值可以将频数分布直方图补充完整;(3)根据统计图中的数据可以求得该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人.【题目详解】(1)由统计图可得,a=8,b=50−8−12−10=20,样本成绩的中位数落在:2.0≤x<2.4范围内,故答案为:8,20,2.0≤x<2.4;(2)由(1)知,b=20,补全的频数分布直方图如图所示;(3)(人)答:估计该年级学生立定跳远成绩在范围内的学生有200人.【题目点拨】本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.20、.【分析】根据加减消元法即可求解.【题目详解】解:得:.解得:代入①,解得:所以,原方程组的解为【题目点拨】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.21、(1)(1,-1);(2)见详解;(3);(4)图形的位置是向右平移了3个单位.【分析】(1)先求出点B的坐标,再点关于坐标原点对称的点的坐标即可;(2)根据将绕着点顺时针旋转的坐标特征即可得到A1、B1、C1的坐标,然后描点连线即可;

(3)利用扇形面积公式进行计算可得线段AC旋转时扫过的面积.(4)、、三点的横坐标都加3,即图形的位置是向右平移了3个单位.【题目详解】解:(1)∵点B的坐标是,∴点关于坐标原点对称的点的坐标为(1,-1);(2)如图所示,即为所求作的图形;(3)∵,∴;(4)∵、、三点的横坐标都加3,纵坐标不变,∴图形的位置是向右平移了3个单位.【题目点拨】本题考查了利用旋转变换作图以及扇形面积的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.22、(1)x1=x2=3;(2)x1=﹣2,x2=6;(3)x1=,x2=.【分析】(1)运用因式分解法即可求解;(2)方程移项后运用因式分解法求解即可;(3)方程移项后运用因式分解法求解即可.【题目详解】(1)x2﹣6x+9=0(x﹣3)2=0x﹣3=0∴x1=x2=3;(2)x2﹣4x=12x2﹣4x﹣12=0(x+2)(x﹣6)=0x+2=0或x﹣6=0∴x1=﹣2,x2=6;(3)3x(2x﹣5)=4x﹣13x(2x﹣5)﹣2(2x﹣5)=0(2x﹣5)(3x﹣2)=02x﹣5=0或3x﹣2=0∴x1=,x2=.【题目点拨】本题考查了解一元二次方程,解决本题的关键是熟练掌握一元二次方程的解法.23、(1)见解析;(2)【分析】(1)根据等腰三角形的性质得到,等量代换得到,根据三角形的内角和和平角的性质得到,于是得到结论;(2)过作与,过作与,根据平行线的性质得到,,推出,求得,,得到,根据相似三角形的性质得到,于是得到,根据平行线分线段成比例定理即可得到结论.【题目详解】解:(1),,,,,,,在△AEB和△BCO中,,;(2)过作于,过作于,,,,,,,,,,,,,,,,,,,,,,,,,,,,.【题目点拨】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,等腰三角形的性质,正确的作出辅助线是解题的关键.24、(1)△ABE、△ADC,理由见解析;(2);(3)【分析】(1)根据相似三角形的判定方法,即可找出与△ACD相似的三角形;(2)由相似三角形的性质,得,由DE=3CE,先求出AD的长度,然后计算得到;(3)由等腰直角三角形的性质,得到∠DAG=∠ADF=45°,然后证明△ADE∽△DFA,得到,求出DF的长度,即可得到.【题目详解】解:(1)与△ACD相似的三角形有:△ABE、△ADC,理由如下:∵AB2=BE·DC,∴.∵AB=AC,∴∠B=∠C,,∴△ABE∽△DCA.∴∠AE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论