2024届湖北省黄冈市数学九年级第一学期期末检测试题含解析_第1页
2024届湖北省黄冈市数学九年级第一学期期末检测试题含解析_第2页
2024届湖北省黄冈市数学九年级第一学期期末检测试题含解析_第3页
2024届湖北省黄冈市数学九年级第一学期期末检测试题含解析_第4页
2024届湖北省黄冈市数学九年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省黄冈市数学九年级第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在中,D在AC边上,,O是BD的中点,连接AO并延长交BC于E,则()A.1:2 B.1:3 C.1:4 D.2:32.如图所示,△ABC内接于⊙O,∠C=45°.AB=4,则⊙O的半径为()A. B.4C. D.53.如图,在边长为1的小正方形网格中,点都在这些小正方形的顶点上,则的余弦值是()A. B. C. D.4.如图,在正方形中,是等边三角形,的延长线分别交于点,连结与相交于点H.给出下列结论,①△ABE≌△DCF;②△DPH是等腰三角形;③;④,其中正确结论的个数是()A. B. C. D.5.下列事件为必然事件的是()A.打开电视机,正在播放新闻 B.任意画一个三角形,其内角和是C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上6.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是()A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于27.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.8.根据阿里巴巴公布的实时数据,截至年月日时,天猫双全球狂欢节总交易额约亿元,用科学记数法表示为()A. B. C. D.9.下列一元二次方程中有两个不相等的实数根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=010.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为(

)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)二、填空题(每小题3分,共24分)11.如图,中,点、分别是边、的中点,、分别交对角线于点、,则______.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是_____km.13.下面是“用三角板画圆的切线”的画图过程.如图1,已知圆上一点A,画过A点的圆的切线.画法:(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.所以直线AD就是过点A的圆的切线.请回答:该画图的依据是______________________________________.14.若将方程x2+6x=7化为(x+m)2=16,则m=______.15.方程x2﹣2x+1=0的根是_____.16.闹元宵吃汤圆是我国传统习俗,正月十五小明的妈妈煮了一碗汤圆,其中有4个花生味和2个芝麻味,小明从中任意吃一个,恰好吃到花生味汤圆的概率是_____.17.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:其中正确结论有_____.①abc>0;②16a+4b+c<0;③4ac﹣b2<8a;④<a;⑤b<c.18.某型号的冰箱连续两次降价,每台售价由原来的2370元降到了1160元,若设平均每次降价的百分率为,则可列出的方程是__________________________________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线与轴交于点,点的坐标分别是,与轴交于点.点在第一、二象限的抛物线上,过点作轴的平行线分别交轴和直线于点、.设点的横坐标为,线段的长度为.⑴求这条抛物线对应的函数表达式;⑵当点在第一象限的抛物线上时,求与之间的函数关系式;⑶在⑵的条件下,当时,求的值.20.(6分)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润为10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属于第几档次产品?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?21.(6分)小明和同学们在数学实践活动课中测量学校旗杆的高度.如图,已知他们小组站在教学楼的四楼,用测角仪看旗杆顶部的仰角为,看旗杆底部的俯角是为,教学楼与旗杆的水平距离是,旗杆有多高(结果保留整数)?(已知,,,,)22.(8分)综合与实践—探究正方形旋转中的数学问题问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;深入探究:(3)请从下面,两题中任选一题作答.我选择题.A.在图2中连接和,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在图3中补全图形,并直接写出的值.23.(8分)如图,在中,,且点的坐标为(1)画出绕点逆时针旋转后的.(2)求点旋转到点所经过的路线长(结果保留)(3)画出关于原点对称的24.(8分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?25.(10分)关于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求证:(1)方程总有两个实数根;(2)如果方程的两根相等,求此时方程的根.26.(10分)定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】过O作BC的平行线交AC与G,由中位线的知识可得出,根据已知和平行线分线段成比例得出,再由同高不同底的三角形中底与三角形面积的关系可求出的比.【题目详解】解:如图,过O作,交AC于G,∵O是BD的中点,∴G是DC的中点.又,设,又,,故选B.【题目点拨】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.2、A【解题分析】试题解析:连接OA,OB.∴在中,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.3、D【分析】由题意可知AD=2,BD=3,利用勾股定理求出AB的长,再根据余弦的定义即可求出答案.【题目详解】解:如下图,根据题意可知,AD=2,BD=3,由勾股定理可得:,∴的余弦值是:.故选:D.【题目点拨】本题考查的知识点是利用网格求角的三角函数值,解此题的关键是利用勾股定理求出AB的长.4、A【分析】①利用等边三角形的性质以及正方形的性质得出∠ABE=∠DCF=30°,再直接利用全等三角形的判定方法得出答案;

②利用等边三角形的性质结合正方形的性质得出∠DHP=∠BHC=75°,进而得出答案;

③利用相似三角形的判定与性质结合锐角三角函数关系得出答案;

④根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积-△BCD的面积,得出答案.【题目详解】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,

在△ABE与△CDF中,,

∴△ABE≌△DCF,故①正确;∵PC=BC=DC,∠PCD=30°,

∴∠CPD=75°,

∵∠DBC=45°,∠BCF=60°,

∴∠DHP=∠BHC=18075°,

∴PD=DH,

∴△DPH是等腰三角形,故②正确;

设PF=x,PC=y,则DC=AB=PC=y,

∵∠FCD=30°,∴即,整理得:解得:,则,故③正确;如图,过P作PM⊥CD,PN⊥BC,

设正方形ABCD的边长是4,∵△BPC为正三角形,

∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,

∴∠PCD=30°,∴,,

S△BPD=S四边形PBCD-S△BCD=S△PBC+S△PDC-S△BCD,∴,故④正确;故正确的有4个,

故选:A.【题目点拨】本题考查了正方形的性质以及全等三角形的判定等知识,解答此题的关键是作出辅助线,利用锐角三角函数的定义表示出出FE及PC的长是解题关键.5、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【题目详解】∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是,是必然事件,符合题意.故选B.【题目点拨】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、D【解题分析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可.【题目详解】解:A.朝上一面的数字恰好是6的概率为:1÷6=;B.朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=;C.朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=;D.朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=∵<<<∴D选项事件发生的概率最大故选D.【题目点拨】此题考查的是求概率问题,掌握概率公式是解决此题的关键.7、B【解题分析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【题目点拨】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.8、A【解题分析】根据科学计数法的表示方法即可得出答案.【题目详解】根据科学计数法的表示方法可得:2135应该表示为2.135×103,故答案选择A.【题目点拨】本题考查的是科学计数法的表示方式:(,n为正整数).9、C【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【题目详解】解:选项A:△=0,方程有两个相等的实数根;选项B、△=0-12=-12<0,方程没有实数根;选项C、△=4-4×1×(-17)=4+68=72>0,方程有两个不相等的实数根;选项D、△=1-4×5=-19<0,方程没有实数根.故选:C.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac;当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、A【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【题目详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【题目点拨】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.二、填空题(每小题3分,共24分)11、【分析】由四边形ABCD是平行四边形可得AD∥BC,AD=BC,△DEH∽△BCH,进而得,连接AC,交BD于点M,如图,根据三角形的中位线定理可得EF∥AC,可推得,△EGH∽△CMH,于是得DG=MG,,设HG=a,依次用a的代数式表示出MH、DG、BH,进而可得答案.【题目详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEH∽△BCH,∵E是AD中点,AD=BC,∴,连接AC,交BD于点M,如图,∵点、分别是边、的中点,∴EF∥AC,∴,△EGH∽△CMH,∴DG=MG,,设HG=a,则MH=2a,MG=3a,∴DG=3a,∴DM=6a,∵四边形ABCD是平行四边形,∴BM=DM=6a,BH=8a,∴.故答案为:.【题目点拨】本题考查了平行四边形的性质、平行线分线段成比例定理、相似三角形的判定和性质、三角形的中位线定理等知识,连接AC,充分利用平行四边形的性质、构建三角形的中位线和相似三角形的模型是解题的关键.12、58【解题分析】设A、B两地的实际距离是x厘米,根据比例尺的性质列出方程,求出x的值,再进行换算即可得出答案.【题目详解】设A.B两地的实际距离是x厘米,∵比例尺为1:1000000,A.B两地的图上距离是5.8厘米,∴1:1000000=5.8:x,解得:x=5800000,∵5800000厘米=58千米,∴A、B两地的实际距离是58千米.故答案为58.【题目点拨】考查图上距离,实际距离,和比例尺之间的关系,注意单位之间的转换.13、90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线【题目详解】解:利用90°的圆周角所对的弦是直径可得到AB为直径,根据经过半径外端并且垂直于这条半径的直线是圆的切线可判断直线AD就是过点A的圆的切线.故答案为90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线.点睛:本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.14、3【题目详解】在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,∴(x+3)2=16∴m=3.15、x1=x2=1【解题分析】方程左边利用完全平方公式变形,开方即可求出解.【题目详解】解:方程变形得:(x﹣1)2=0,解得:x1=x2=1.故答案是:x1=x2=1.【题目点拨】考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.16、【分析】用花生味汤圆的个数除以汤圆总数计算即可.【题目详解】解:∵一碗汤圆,其中有4个花生味和2个芝麻味,∴从中任意吃一个,恰好吃到花生味汤圆的概率是:.故答案为.【题目点拨】本题考查了概率公式的应用,如果一个事件共有n种可能,而且每一个事件发生的可能性相同,其中事件A出现m种可能,那么事件A的概率.17、①③④.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标、顶点坐标等知识,逐个判断即可.【题目详解】抛物线开口向上,因此a>0,对称轴为x=1>0,a、b异号,故b<0,与y轴的交点B在(0,﹣2)和(0,﹣1)之间,即﹣2<c<﹣1,所以abc>0,故①正确;抛物线x轴交于点A(﹣1,0),对称轴为x=1,因此与x轴的另一个交点为(3,0),当x=4时,y=16a+4b+c>0,所以②不正确;由对称轴为x=1,与y轴交点在(0,﹣2)和(0,﹣1)之间,因此顶点的纵坐标小于﹣1,即<﹣1,也就是4ac﹣b2<﹣4a,又a>0,所以4ac﹣b2<8a是正确的,故③是正确的;由题意可得,方程ax2+bx+c=0的两个根为x1=﹣1,x2=3,又x1•x2=,即c=﹣3a,而﹣2<c<﹣1,也就是﹣2<﹣3a<﹣1,因此<a<,故④正确;抛物线过(﹣1,0)点,所以a﹣b+c=0,即a=b﹣c,又a>0,即b﹣c>0,得b>c,所以⑤不正确,综上所述,正确的结论有三个:①③④,故答案为:①③④.【点评】本题考查了二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.18、【分析】先列出第一次降价后售价的代数式,再根据第一次的售价列出第二次降价后售价的代数式,然后根据已知条件即可列出方程.【题目详解】依题意得:第一次降价后售价为:2370(1-x),

则第二次降价后的售价为:2370(1-x)(1-x)=2370(1-x)2,

故.

故答案为.【题目点拨】此题考查一元二次方程的运用,解题关键在于要注意题意指明的是降价,应该是1-x而不是1+x.三、解答题(共66分)19、(1);(2)当时,,当时,;(3)或.【分析】(1)由题意直接根据待定系数法,进行分析计算即可得出函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据待定系数法,可得BC的解析式,根据E点的纵坐标,可得E点的横坐标,根据两点间的距离,可得答案;(3)由题意根据PE与DE的关系,可得关于m的方程,根据解方程根据解方程,即可得出答案.【题目详解】解:(1)由题意得,解得∴这条抛物线对应的函数表达式是.(2)当时,.∴点的坐标是.设直线的函数关系式为.由题意得解得∴直线的函数关系式为.∵PD∥x轴,∴.∴.当时,如图①,.当时,如图②,.(3)当时,,.∵,∴.解得(不合题意,舍去),.当时,,.∵,∴.解得(不合题意,舍去),.综上所述,当时,或.【题目点拨】本题考查二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴直线上点的纵坐标相等得出E点的纵坐标是解题关键;利用PE与DE的关系得出关于m的方程是解题的关键.20、(1)第3档次;(2)第5档次【解题分析】试题分析:(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.试题解析:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.考点:一元二次方程的应用.21、旗杆的高约是.【分析】过点B作于点,由题意知,,,,根据锐角三角函数即可分别求出AC和CD,从而求出结论.【题目详解】解:过点B作于点,由题意知,,,∵,∴m,∵,∴m,∴m,答:旗杆的高约是.【题目点拨】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键.22、(1)见解析;(2);(3)A.,B..【分析】(1)根据旋转性质证得,从而证得绪论;(2)连接、,过点作,根据旋转性质结合三角形三线合一的性质证得,再证得四边形是矩形,从而求得结论;(3)A.设,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应边成比例再结合勾股定理即可求得答案;B.作交直线于点,根据旋转性质利用AAS证得,证得OP是线段的中垂线,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应高的比等于相似比再结合勾股定理即可求得答案;【题目详解】(1)由题意得:,,由旋转性质得:,∵四边形是矩形(2)连接、,过点作于N,由旋转得:,∵,,∵ON⊥D,∠=∠,∴四边形是矩形,∴,∴;(3)A.如图,连接,,,由旋转的性质得:∠BO=∠,BO=O,,∴,∴,,,设,则,B.如图,过点作AG∥交直线于点G,过点O作交直线于点,连接OP,∵AG∥,,四边形是正方形,由旋转可知:,,,,,,,,,,,,在和中,,,又∵,,,,,,,又∵,,,,,设,则,,在中,由勾股定理可得:,.【题目点拨】本题考查四边形综合题、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、、勾股定理、矩形的性质、线段的垂直平分线的性质和判定等知识,解题的关键是准确寻找全等三角形解决问题.23、(1)见解析;(2);(2)见解析【分析】(1)根据旋转角度、旋转中心及旋转方向确定各点的对称点,顺次连接即可;(2)根据圆的周长的计算即可;(3)根据与原点的对称点的坐标特征:横、纵坐标都变为相反数确定各点的对称点,顺次连接即可.【题目详解】解:(1)如图的即为所作图形,(2)由图可知是直角三角形,,,所以,点旋转到的过程中所经过的路

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论