版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省姜堰实验数学九年级第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().A. B.C. D.2.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O)20米的A处,则小明的影子AM的长为()A.1.25米 B.5米 C.6米 D.4米3.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40° B.50° C.80° D.100°4.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°5.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠DAE=20°,则∠BAC的度数为()A.70° B.80° C.90° D.100°6.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A. B. C. D.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.-1<x<2 B.x>2 C.x<-1 D.x<-1或x>28.下列运算正确的是()A. B.C. D.9.一个扇形的半径为4,弧长为,其圆心角度数是()A. B. C. D.10.方程(x+1)2=4的解是()A.x1=﹣3,x2=3 B.x1=﹣3,x2=1 C.x1=﹣1,x2=1 D.x1=1,x2=3二、填空题(每小题3分,共24分)11.某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦”演讲比赛,则恰好选中一男一女的概率是_____.12.如图,RtABC中,∠C=90°,AC=10,BC=1.动点P以每秒3个单位的速度从点A开始向点C移动,直线l从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动.在移动过程中,将PEF绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BN∥PE时,t的值为_____.13.已知,是抛物线上两点,该抛物线的解析式是__________.14.边心距是的正六边形的面积为___________.15.二次函数y=2x2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.16.若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_____cm.(结果保留根号)17.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.18.已知m为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________三、解答题(共66分)19.(10分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2).(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.20.(6分)已知关于x的方程x2+mx+m-2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.21.(6分)(1)解方程:x2+4x-1=0(2)已知α为锐角,若,求的度数.22.(8分)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)请比较①摸出的2个球颜色相同②摸出的2个球中至少有1个白球,这两种情况哪个概率大,请说明理由23.(8分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.24.(8分)阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,…,个点,其中任意三个点都不在同一条直线上经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们,设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)点数2345…示意图…直线条数1…请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为______;(2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点?25.(10分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.26.(10分)(1)解方程:(2)如图,是等腰直角三角形,是斜边,将绕点逆时针旋转后,能与重合,如果,那么的长等于多少?
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据勾股定理求出AB,并根据正弦公式:sinA=求解即可.【题目详解】∵∠C=90°,BC=3,AC=4∴∴故选C.【题目点拨】本题主要是正弦函数与勾股定理的简单应用,正确理解正弦求值公式即可.2、B【分析】易得:△ABM∽△OCM,利用相似三角形对应边成比例可得出小明的影子AM的长.【题目详解】如图,根据题意,易得△MBA∽△MCO,
根据相似三角形的性质可知,即,
解得AM=5m.
则小明的影子AM的长为5米.
故选:B.【题目点拨】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.3、D【分析】由题意直接根据圆周角定理求解即可.【题目详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选:D.【题目点拨】本题考查圆周角定理的运用,熟练掌握圆周角定理是解题的关键.4、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【题目详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【题目点拨】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.5、D【分析】先根据垂直平分线的特点得出∠B=∠DAB,∠C=∠EAC,然后根据△ABC的内角和及∠DAE的大小,可推导出∠DAB+∠EAC的大小,从而得出∠BAC的大小.【题目详解】如下图∵DM是线段AB的垂直平分线,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∵∠DAE=20°∴∠DAB+∠EAC=80°,∴∠BAC=100°,故选:D.【题目点拨】本题考查垂直平分线的性质,解题关键是利用整体思想,得出∠DAB+∠EAC=80°.6、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】14400000=1.44×1.故选:A.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、D【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x轴的上方,由此可以求出x的取值范围.【题目详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【题目点拨】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.8、D【分析】根据题意利用合并同类项法则、完全平方公式、同底数幂的乘法运算法则及幂的乘方运算法则,分别化简求出答案.【题目详解】解:A.合并同类项,系数相加字母和指数不变,,此选项不正确;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此选项错误;C.,同底数幂乘法底数不变指数相加,a2·a3=a5,此选项不正确;D.,幂的乘方底数不变指数相乘,(-a)4=(-1)4.a4=a4,此选项正确.故选:D【题目点拨】本题考查了有理式的运算法则,合并同类项的关键正确判断同类项,然后按照合并同类项的法则进行合并;遇到幂的乘方时,需要注意若括号内有“-”时,其结果的符号取决于指数的奇偶性.9、C【分析】根据弧长公式即可求出圆心角的度数.【题目详解】解:∵扇形的半径为4,弧长为,∴解得:,即其圆心角度数是故选C.【题目点拨】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.10、B【解题分析】利用直接开平方的方法解一元二次方程得出答案.【题目详解】(x+1)2=4则x+1=±2,解得:x1=−1-2=-3,x2=−1+2=1.故选B.【题目点拨】此题主要考查了直接开平方法解方程,正确开平方是解题关键.二、填空题(每小题3分,共24分)11、【解题分析】结合题意,画树状图进行计算,即可得到答案.【题目详解】画树状图为:共20种等可能的结果数,其中选中一男一女的结果数为12,∴恰好选中一男一女的概率是,故答案为:.【题目点拨】本题考查概率,解题的关键是熟练掌握树状图法求概率.12、【分析】作NH⊥BC于H.首先证明∠PEC=∠NEB=∠NBE,推出EH=BH,根据cos∠PEC=cos∠NEB,推出=,由此构建方程解决问题即可.【题目详解】解:作NH⊥BC于H.∵EF⊥BC,∠PEF=∠NEF,∴∠FEC=∠FEB=90°,∵∠PEC+∠PEF=90°,∠NEB+∠FEN=90°,∴∠PEC=∠NEB,∵PE∥BN,∴∠PEC=∠NBE,∴∠NEB=∠NBE,∴NE=NB,∵HN⊥BE,∴EH=BH,∴cos∠PEC=cos∠NEB,∴=,∵EF∥AC,∴=,∴=,∴EF=EN=(1﹣3t),∴=,整理得:63t2﹣960t+100=0,解得t=或(舍弃),故答案为:.【题目点拨】本题考查旋转的性质,平行线的性质,解直角三角形、相似三角形的判定与性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.13、【分析】将A(0,3),B(2,3)代入抛物线y=-x2+bx+c的解析式,可得b,c,可得解析式.【题目详解】∵A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,∴代入得,解得:b=2,c=3,∴抛物线的解析式为:y=-x2+2x+3.故答案为:y=-x2+2x+3.【题目点拨】本题主要考查了待定系数法求解析式,利用代入法解得b,c是解答此题的关键.14、【分析】根据题意画出图形,先求出∠AOB的度数,证明△AOB是等边三角形,得出AB=OA,再根据直角三角形的性质求出OA的长,再根据S六边形=6S△AOB即可得出结论.【题目详解】解:∵图中是正六边形,∴∠AOB=60°.∵OA=OB,∴△OAB是等边三角形.∴OA=OB=AB,∵OD⊥AB,OD=,∴OA=∴AB=4,∴S△AOB=AB×OD=×2×=,∴正六边形的面积=6S△AOB=6×=6.故答案为:6.【题目点拨】本题考查的是正多边形和圆,熟知正六边形的性质并求出△AOB的面积是解答此题的关键.15、y=2(x+2)2﹣1【分析】直接根据“上加下减,左加右减”的原则进行解答.【题目详解】由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移2个单位长度所得抛物线的解析式为:y=2(x+2)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+2)2向下平移1个单位长度所得抛物线的解析式为:y=2(x+2)2﹣1,即y=2(x+2)2﹣1.故答案为:y=2(x+2)2﹣1.【题目点拨】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.16、或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【题目详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有AC=AB=×10=,当AC<BC时,则有BC=AB=×10=,∴AC=AB-BC=10-()=,∴AC长为cm或cm.故答案为:或【题目点拨】本题考查了黄金分割点的概念.注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.17、40cm【解题分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【题目详解】∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故答案为:40cm.【题目点拨】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.18、1【分析】由题意可得m2-3m=2020,进而可得2m2-6m=4040,然后整体代入所求式子计算即可.【题目详解】解:∵m为一元二次方程x2-3x-2020=0的一个根,∴m2-3m-2020=0,∴m2-3m=2020,∴2m2-6m=4040,∴2m2-6m+2=4040+2=1.故答案为:1.【题目点拨】本题考查了一元二次方程的解和代数式求值,熟练掌握基本知识、灵活应用整体思想是解题的关键.三、解答题(共66分)19、(1)20米;(2)25米.【分析】(1)∠BDC=45°,可得DC=BC=20m,;(2)设DC=BC=xm,可得tan50°=≈1.2,解得x的值即可得建筑物BC的高.【题目详解】解:(1)∵∠BDC=45°,∴DC=BC=20m,答:建筑物BC的高度为20m;(2)设DC=BC=xm,根据题意可得:tan50°=≈1.2,解得:x=25,答:建筑物BC的高度为25m.【题目点拨】本题考查解直角三角形的应用.20、(1);(2)证明见解析.【解题分析】试题分析:一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.(1)直接把x=1代入方程x2+mx+m﹣2=0求出m的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解.21、(1),;(2)75°.【分析】(1)用公式法即可求解;(2)根据特殊角的三角函数求解即可.【题目详解】(1)∵,∴,∴,,(2)∵,∴,∴.【题目点拨】本题考查了利用公式法解一元二次方程和利用特殊角的三角函数值求角的度值,熟记特殊角的三角函数值是解题的关键.22、(1)摸出的2个球都是白球的概率为;(2)概率最大的是摸岀的2个球中至少有1个白球.理由见解析.【分析】(1)先画树状图展示所以6种等可能的结果,其中摸出的2个球都是白球的有2种结果,然后根据概率定义求解.(2)根据树状图可知:共有6种等可能的结果,其中摸出的2个球颜色相同的有3种结果,摸出的2个球中至少有1个白球的有5种结果,根据概率公式分别计算出各自的概率,再比较大小即可.【题目详解】(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为;(2)∵摸出的2个球颜色相同概率为、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸岀的2个球中至少有1个白球.【题目点拨】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出,再从中选出符合事件A或B的结果数目,求出概率.23、(1)关系式;(2)x=15,y=1.【解题分析】(1)根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可;(2)根据概率公式和(1)求出的关系式列出关系式,再与(1)得出的方程联立方程组,求出x,y的值即可.【题目详解】(1)∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是,∴可得关系式;(2)如果往口袋中再放进10个黑球,则取得黑棋的概率变为,又可得;联立求解可得x=15,y=1.【题目点拨】考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24、(1);(2)该平面内有8个已知点.【分析】(1)根据图表中数据过两点的直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合肥客运从业资格证考试
- 2024年江西c1客运从业资格证考试题库答案
- 2024年商业空间室内装潢施工合同版B版
- 2024年婚礼现场特效制作服务协议
- 2024年创新药品采购协议范本版B版
- 2024年度企业员工劳动协议一
- 2024年度个人信用担保业务协议版
- 2024年度企业综合节能改造工程设计与施工合同2篇
- 2024年国际航空货物运输服务合同范本
- 2(2024版)人工智能教育平台建设合同
- 第十届挑战杯大学生课外学术作品竞赛参赛作品格式规范
- 口袋妖怪XY精灵分布表
- 危险化学品生产企业主要负责人安全培训测试补考试卷
- 涂装厂PFMEA模版
- 美国标准大气参数表(1976)-负5km到100万米
- 筛分系统安装施工组织设计(共47页)
- 锡膏厚度测试_SPC
- 《生产管理能力提升》PPT课件.ppt
- 毕业设计(论文)循环流化床锅炉工作分析及除尘系统设计
- 土地整治项目全套表格
- 毕业设计(论文)手柄冲裁模设计与制造(含全套图纸)
评论
0/150
提交评论