《起跑线》教学反思_第1页
《起跑线》教学反思_第2页
《起跑线》教学反思_第3页
《起跑线》教学反思_第4页
《起跑线》教学反思_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页码页码页/总共NUMPAGES总页数总页数页《起跑线》教学反思现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数学问题。例如在上《起跑线》这节课时,教师可以提供一些跑步资料让学生观察,一些学生观察到,每位运动员都不在同一起跑线上。于是提出了“400米赛跑为什么运动员不在同一起跑线上?”、“400米赛跑,相邻跑道的运动员起点的距离应该多大?”的问题。教师再组织学生四人小组进行讨论计算方法,最后总结出计算的两种方法:1、分别算出每个跑道的长度,再相减。2、只要找出半圆相差几,就用3.14×几,就得到运动员起点的距离。现代思维科学认为:问题是思维的起点,创新的基石。“质疑,是发现的设想,是探究的动力,是创新的前提。”加强学生质疑问难能力的培养,即培养学生自己发现问题,提出问题的能力有极重要的意义。”学生不仅要“学会答”,而且更要“学会问”,提问可以激发学生的积极思考,促进他们的主动参与。数学来源于生活,在我们的身边处处有数学问题,关键在于我们能否发现问题、提出问题。所以积极引导学生观察身边的事和物,就能提出许多数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论