训练神经网络的五大算法_第1页
训练神经网络的五大算法_第2页
训练神经网络的五大算法_第3页
训练神经网络的五大算法_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

训练神经网络的五大算法

神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同。

问题的抽象

人们把神经网络的学习过程转化为求损失函数f的最小值问题。一般来说,损失函数包括误差项和正则项两部分。误差项衡量神经网络模型在训练数据集上的拟合程度,而正则项则是控制模型的复杂程度,防止出现过拟合现象。损失函数的函数值由模型的参数(权重值和偏置值)所决定。我们可以把两部分参数合并为一个n维的权重向量,记为w。下图是损失函数f(w)的图示。

如上图所示,w*是损失函数的最小值。在空间内任意选择一个点A,我们都能计算得到损失函数的一阶、二阶导数。一阶导数可以表示为一个向量:ᐁif(w)=df/dwi(i=1,…,n)同样的,损失函数的二阶导数可以表示为海森矩阵(HessianMatrix):Hi,jf(w)=d2f/dwi·dwj(i,j=1,…,n)多变量的连续可微分函数的求解问题一直被人们广泛地研究。许多的传统方法都能被直接用于神经网络模型的求解。一维优化方法

尽管损失函数的值需要由多个参数决定,但是一维优化方法在这里也非常重要。这些方法常常用于训练神经网络模型。许多训练算法首先计算得到一个训练的方向d,以及速率η来表示损失值在此方向上的变化,f(η)。下图片展示了这种一维函数。

f和η*在η1和η2所在的区间之内。由此可见,一维优化方法就是寻找到某个给定的一维函数的最小值。黄金分段法和Brent方法就是其中两种广泛应用的算法。这两种算法不断地缩减最小值的范围,直到η1和η2两点之间的距离小于设定的阈值。多维优化方法

我们把神经网络的学习问题抽象为寻找参数向量w*的问题,使得损失函数f在此点取到最小值。假设我们找到了损失函数的最小值点,那么就认为神经网络函数在此处的梯度等于零。通常情况下,损失函数属于非线性函数,我们很难用训练算法准确地求得最优解。因此,我们尝试在参数空间内逐步搜索,来寻找最优解。每搜索一步,重新计算神经网络模型的参数,损失值则相应地减小。我们先随机初始化一组模型参数。接着,每次迭代更新这组参数,损失函数值也随之减小。当某个特定条件或是终止条件得到满足时,整个训练过程即结束。现在我们就来介绍几种神经网络的最重要训练算法。

1.梯度下降法(Gradientdescent)梯度下降方法是最简单的训练算法。它仅需要用到梯度向量的信息,因此属于一阶算法。我们定义f(wi)=fiandᐁf(wi)=gi。算法起始于W0点,然后在第i步沿着di=-gi方向从wi移到wi+1,反复迭代直到满足终止条件。梯度下降算法的迭代公式为:wi+1=wi-di·ηi,i=0,1,…参数η是学习率。这个参数既可以设置为固定值,也可以用一维优化方法沿着训练的方向逐步更新计算。人们一般倾向于逐步更新计算学习率,但很多软件和工具仍旧使用固定的学习率。下图是梯度下降训练方法的流程图。如图所示,参数的更新分为两步:第一步计算梯度下降的方向,第二步计算合适的学习率。

梯度下降方法有一个严重的弊端,若函数的梯度变化如图所示呈现出细长的结构时,该方法需要进行很多次迭代运算。而且,尽管梯度下降的方向就是损失函数值减小最快的方向,但是这并不一定是收敛最快的路径。下图描述了此问题。

当神

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论