版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
x(t)X
Fourier Laplace
Freuenc
X
Zjw)X(z),ReviewandExercisesforSignalsandSystems ZC- x(t)X
X(s),
Fourier
Laplace
FreuencD-
X
Zjw)
X(z),
ZTimeDomain Freq.Domain(Ch1,Ch2) x[n]/ X[ejw]/X(Fourier H[ejw]/H(TimeDomain Freq.Domain(Ch1,Ch2) (Ch3,Ch4…Ch8)
x[n]
x(t)
Fourier
X( H[ejw]/H(Time ComplexFreq.(Ch1,
(Ch9,x[n]/ X(z),ROC/X(s), H(z),ROC/H(s),Time ComplexFreq.(Ch1,
(Ch9,x[n]
x(t)
X(z),ROC
h(t)
H(z),
/H
KeKewordsforChater (1) (2) inthetime (3) (3) (4)(4)Even/Odd (5)LinearKeKewordsforChater (1) (2) inthetime (3) (3) (4)(4) (5)Exponetial(Periodicalx(t)=C
x[n]=C(x(t)=ej0t (x[n]=ej0nUnitSample(t)
fort
,
[n]
n3
n
u(t)
tt
u[n]
nnx(t)=C x[n]=C(x(t)=ejw0t (x[n]=ejw0nUnitSampled(t)=0,fort„,
d
n„3
n=
t><KeywordsKeywordsforChapterLTIsstemAkindof icalssystem UnitImpulseConvolutionSum/IntegralLTIsystemDescribedbyLinearConstant-CoefficientDifferenceandDifferentialEquation(LCCDE)
(ConditionofInitialBlockDiagramu[n]
n n0UnitUnitImpulsexxn=UnitUnitimpulsex[n]x[n]x[k][nkkkkLTI:hk[n]=h[n-KeywordsKeywordsforChapterLTIsstemAkindof icals UnitImpulseConvolutionSum/IntegralDescribedbyLinearConstant-CoefficientDifferenceandDifferentialEquation(LCCDE)(LTI,causal) (ConditionofInitialRest)BlockDiagramRepresentation Convolution
k
[nk]
y[n]
k
k=x[n]*x(x(t)Convolutiony(t)x()h(t(Input:Sumofunit=x(t)*(Output:SumofunitimpulsesCalculationofConvolutionSum/ConvolutionIntegralIndependentvariablereplace:x[n]x[k],h[n]h[k]TimeInversalTimeShiftFour
h[k]h[-k]h[n-Multiplication:
y[n]
kFour
Independentx(t)x(),h(t)h()Transformationofinh():h()h(-)h(t- x()h(t-
y(t)
)dxxn=dUnitUnitimpulseProertiesofLTISDiscrete Continuous(1)x[n]*h[n]=h[n] x(t)*h(t) h(t)2xn*{h1n+h2 x(t)
Notes:OnlyforLTI h(t)=k|h[k]|k|h()|d
h[n]=0forn<0h[n]*h1[n]=[n]
h(t)=0fort<0h(t)*h1(t)=(t)TypicalTypicalLTISystemanditsUnitImpulseDiscrete Continuous
Identityht=
x[n][n]
y(t)
x(t)(t)
Gain y[n]
x[n]K[n]
y(t)
x(t)
(t)
yy[n]x[n][nn]x[nn00y(t)x(t)(tt)x(tt ¥Convolution
[n-k]
=¥¥
=x[n]*x(t)
Convolution y(t)
(Input:Sumofunit
=x(t)*(Output:Sumofunitimpulsesy[n]
x[n]h[n]
x[knkn
y(t)
x(t)h(t)
t1storder 1storderth[n]=[n]-[n- x[n]([n][nx[n]x[ny(t)x(t)d(t)dx(t)ConvolutioninteralwithSin x
*(t)
x(t)x
*
t0)
t0
t1)*
t2)
t2
x(t)*
'(t)
55xt*u(t)((t)t(6)x(t)*h x'ttCalculationofConvolutionSum/ConvolutionIndependentvariablereplace:fix[k],h[n] fih[k]TimeInversalTimeShift:Four fih[- fih[n-Four
+ fix(t),h(t) Transformationoftinh(t): fih(-t) fih(t- x(t)h(t-t)ConvolutionConvolution
Integrating:y(t)
ConvolutionConvolutionProertiesofLTISDiscrete Continuous(1)x[n]*h[n]=h[n]*x[n] x(t)*h(t)= h(t)*x(t)2xn*{h1n+h2n x(t)*{h1(t)+h2(t)} h(t)=k
h[n]=0forn<0
h(t)=0fort<0SolutionSolutionforLCCDE(DifferenceRecursiveequationyy[n]x[n]1y[n2Initialcondition
=(ConditionofInitial x(n)
n
y(n)
nTypicalTypicalLTISystemanditsUnitImpulseDiscretetime Continuoustime Identitysystemht=dt Gain y(t)=x(t)* (t)=Time sBlockBlockDiagramfoy[n]=x[n]*h[n]=x[k
y(t)=x(t)*h(t)=-¥1storderDifference 1storderDifferentialh[n]=d[n]-d[n-1] (t)a
(t)
bx(t)KewordsforChaterFourierSeriesKewordsforChaterFourierSeriesk
ae
arecalledFourierSeriescoefficientsspectralcoefficientsx(t).~(t)Fak kTx(t)ejk0tdt(AnalysisTConvolutioninteralwithSin xt*d(t)=x(t) xt*d(t-t0)=x(t-t0x(t-t1)*d(t-t2)=x(t-t1-t2x(t)*d'(t)=xFSinSignalFSinSignal0x(t)0a0kFS(Synthesis(Time kkTx(t)eT0tdt(Analysis(Freq.xt*u(t)=x(-1)(t) (6)x(t)*h =
FSFSinLTIsystem
Basicx(t)
k
ak
akH(
k
Basic
akH
HH(H(jw)~H(jw)~ConvolutionConvolutionFILTERFILTER(filtering
y(t)
x(t)
dx(t)HH(jw) KewordsforChaterFourierTransform(FT): x(t)e
FTx(t)
1
X(jX(j)X(j)ejX(ConvolutionConvolution7(9)7(9)PropertiesofFourierTime/Freq.Time/Freq.TimeTimeConjugationanditsX(jt)2x((Convolution+Parseval’sParseval’s(j(00ax(t)by(t)aX(j)(j(00
t)ejt0X
ej0tx(t)x*(t) x'(t)dx(t)jX(jX*(jjtx(t) x(at) X(ja
x(t)
dt1 |X
d
SolutionSolutionforLCCDE(Differencey[n]=y[n]=x[n]+1y[n-Initialcondition(LTI,causal)=(ConditionofInitial x(n)= n< y(n)= n<
TypicalFTpairs(7x(t t
X(j)
a
(a at
eat
(t0x(t
u(t
(t01x(t)
2 Xt
j)
a2x(t)
eat
,a0 2X2X(11f(t)10t0BlockBlockDiagramfo1x(t)
2
t
W/
x(t)
1X
W
W
sincsinc()sin(
sa()21t (t)(j)ndt2(-j)nndtd
(a
,(a
sign(t)1
u(t)
11jsign()Fj(j( (t)+a
(t)=TheTheFTsoftypicalperiodicsignalsx(t)x(t)X(j)2sink k0)2Sinusoidalsikx(t)sin0tX(F00)0x(t)0
costX
0xx(t)a0tFkX(j)ak0)kk(3)Impulsex(t)(tnT)X(j)2TkTKewordsforChaterForsignalx(t)
(
jΦ)e
A
x(t)X( X(
)
X(
)|
jX(|X(
)|
MagnitudeSpectrumPhaseSpectrumKewordsforChaterFourierSeries ae (SynthesisTTx(t)e-jkw0tdt(AnalysisFF~(t)arearecalledFourierSeriescoefficientsspectralcoefficientsx(t).ForLTIsystemh(t)X(j
|H
Magnitude
H(jw)
PhaseY(jw)
X( H(
X(jw)
LTIsystem’sinfluence:Gain&Phase(T,wKeywordsforChapterKeywordsforChapter(Shannon)SamplingLetx(t)beaband-limitedsignalX(j)=0for||>M.Thenx(t)isuniquelydeterminedbyitssamplesx(nT),n=0,1,2,…,ifXX唯一恢p(j)x唯一恢ps≥2M,where2MiscalledNyquistRate.(Minimumdistortionlesssamplingfrequency)FSFSinLTIsystem Basicx(t)kk
ae
¥k=-¥Basic¥ akH(jkw033MethodsofSignalSamplingand1)Impulse-trainSamplingandxp(t)x(txp(t)x(t)p(t)x(nT)(tx
H(
x(t) xr(t)
xp(t)sin((tnT)/T)1T1
x(nT) Xp(jw) X(wkws
(tnT
H(Tk
X(jw)
Xp(jw)H(
(wMwcwswMH(H(jw)~—H(jw)~SamplingSamplingwithZero-orderxp(xp(t)x(nT)(tnT1k tx(t)x(t)h(t)ror(2)xo(t)xp(t)ho(t)x(nT)ho(tnTH(jw)T/H(jw),wroc0,wcjwT/2sin(wT/wH0(jw)ks0H( X(wkw0p0swX(jw)X(jw)H(jw)sX(wkwkTpX(jw)Xr( Xo(jw)Hr(FILTERFILTER(filtering x(t)H(jw)=3)Sampling3)Samplingwithaperiodicnarrowsquarex(t)x(t)S1tTxs(t)x(t)pTxr(t)xs(t)hrX(jw)sX(jw)P(T aX(wkwksX(jw)X(jw)H(rsrkPT(jw)2ak(wkwskc0,wrH(jw)ao,w KeywordsforKeywordsforChapter(1)c(t)e y(t)x(t)c(t)InTime InFreq.X(jw)Y(jwjwcx(t)y(t)eY(jw)X(jwjwcy(t)x(t)ejctKewordsforChater:-- FT
x(t)ejwtx(t)
1
‹fi(w)F 2p-(2)c(t)cos(wc(2)c(t)cos(wct)cos(wct YY(jw)1X(jwjw)1X(jwjw2c2cy(t)x(t)w(t)y(t)cos(wct)*h(t)2sinwW(jw)1Y(jwjw)1Y(jwjw2c2c. tc4c421Y(jw)1Y(jwj2w)1Y(jwj2wx(t)[1cos(2wct)]7(9)7(9)PropertiesofFourierTime/Freq.Time/Freq.TimeTimeConjugationanditsfi(Convolution+KeywordsKeywordsforChapterKeypointsLTanditsROC roertiesandLTILT(PartialFractionApplicationofLTSystemanalysis BlockDiagramPropertiesPropertiesofLaplace-a1t)
aX1(s)
Time
Containing
t0
e
X(s),Shiftingins-es0t
x(t)
X(s,e(,e((s1)2
s0
X(s)Re{sX(s)
2
2(t
)fi)fiejw0tx(t)fi0fi fi x(at)fi1ax(t)+by(t)fi)+bY( xx'(t)=dx(t)fi f
+¥|x(t)|2dt=
|X(jw)|2 Time x(at)
X x*(t)
X*(s*), x(t)
is
X*(s)
X(s*)ZerospolesTheConvolutionx1(t)
x2(t)
X1(s)
2(s),ContainingR1 2p-Differentiationinthetimedx(t)
sX(s),
Containinguk(t)
sk,Integrationinthetimetx(t
LT
1X(s),sContaining
TypicalFTpairs(7x(t ‹t
X(jw)=a+
(a>x(t)=e-atu(t
(t‡0 (t<01x(t) 2‹fiXt
jw)=a2+wIfx(t)0,forIfx(t)0,fort.ItsLTROC:Re{s}>19)Differentiationinthes-tx(t) dX(s),Rteatu(t) -d1dss1(ntn1eatu(t)LT]11(sa)2,Re{s}(sa)n,Re{s}Re{x(t)=e-at ,a>55TypicalLT(a:1eatu(t)eatu(t)sa,Re{s}Re{a1s,Re{s}Re{aaReImComplex0 0tu(t) ss2200tu(t)0s2202X2X(‹1f1f(t)‹F(jw)=
letu(t)
s
u(t)
1 s
0(t-t)0
Re}:theentires-
nT
ensT
esTn0
n0
1
‹t
p0pp0pW/
x(t)=p
1X(jwt sinc()
ILT-PartialFractionn>m,RationalX(s),ILT-PartialFractionn>m,RationalX(s),D(s)=0hasthesame
sm1
sm2
LbsX(s)
m2 (s
)r(s
)(s
)L(s n1r 1r(s
(s
)r
L
(s
L ILT
(r
t
Aeitu(t)ii…iin≤m,Rational
(r
t
Aeitu(t)X(s)[Asmn
smn1
L
s
N1(s)
dmn
mn
mn1
dtmn
mn(t)
(t)w Wsa()=BlockBlockdiagramofRationalH(s)H(s)Y(s)X(s)Step1s23s)(2s24s2
y(t)
2y(t)2
x(t)4
x(t)
6x(t)22StepStep1Y(s)(2s24s6)Y(s)s23s1X(s)1Y(s)
>‹1+t‹1+tfi‹fiddt«(jw)t«2p(-dd(w
d(w)+sign(t)=+1(t>0)‹fi
u(t)1s1X1s1
s2Y
1s1s
4s
Y
Y(s)X(s)
E(s)
F(s)ss
Z(s)s1s1TheTheFTsoftypicalperiodicsignals(1)Periodicsquarex(t)=cosw0t‹fiX(jw)=pd(w+w0)+pd(w-w0KeywordsKeywordsforChapterKeyZTanditsROC roertiesandZTIZT(PartialFractionExpansion/PowerSeriesApplicationofZTSystem H(z)-定性/BlockDiagram(3)ImpulseF
2p x(t)=
d(t-nT)
fiX(jw)
Tk=- xx(t)=ae‹fiX(jw)=a2pd(w-kwPropertiesPropertiesofZ-ax[n]
aX1(z)
Time
Contains
z
X(z),R是否包含0,∞有可能变化Scalinginz-zzn0x[n]X(z/z0ejω0nx[n]X(ejω0z),
X(z),KewordsforChaterAej(wt+Φ)=(AejΦ)eForsignalx(t)Acos(wtx(t)‹fiX( X( )=|X( |X(—X
)|--
MagnitudeSpectrumPhaseSpectrumTimexTimex[n]X(1z x*[n]
X*(z*),
isX(z)
X*(z*
Zerospoles(zTheConvolution(z
x2
X1(z)X
R1∩R2Differentiationinthez-
z
X(z),TheInitial-ValueIfx[n]
n
ROC:|z|>r1zzx[0]limX(z),ForLTIsystemh(t)
H(jw)
|H(jw)|---Magnitude—H(jw)---PhaseY(jw)
—Y(jw)=—X(jw)+—H(LTIsystem’sinfluence:Gain&PhaseTypicalZTanu[n]
1az
,zanu[
,z
1az2
1z
,zu[n
1z
,z
z
,zu[nm
1z
z1z
,z
u[(nm)? 1
)zcos(ω0n)u[n] ,
1
)z)z
z2z1
u[n] ,0 10
)z1
z2
δ
0z
z
]
z
0z0 n0(
Rinclude)n0<0,RincludeKeywordsKeywordsforChapterLetx(t)beaband-limitedsignalX(jw)=0for|w|>wM.Thenx(t)isuniquelydeterminedbyitssamplesX 唯一恢fiXX 唯一恢fiXj)px( 唯一恢fipwws≥2wM,where2wMiscalledNyquistRate.(Minimumdistortionlesssamplingfrequency)nanu[nanu[n]az(1az1)2,z1anu[n1]ZTX(z)ln(1az1)nzPartialFractionX(z)m i11aiinA(a)u[m/inA(a)mx[n]XX(z)ammx[n]a[nmm33MethodsofSignalSamplingandImpulse-trainSamplingand x
H(
p xr(t)=xp(t) Xp(jw)=
=Tx(nT)
H(sTk=- X(jw)=s
p(jw)H(T TBlockdiagramofRationalBlockdiagramofRationaly[n]1y[n1]1y[n2]x[n]7x[n1]1x[n4842H(z)Y(z)X(z)17z11z111z11z )(17z11z2811z11z42448Y(z)1StepStepY(z)1X(z)z18z11411StepY(z)4z12z2)Y(z)1
(wM<wc<ws-wMStep
Step1
z1
z
14
z12
z2
zz1444z118182SamplingSamplingwithZero-orderxp(xp(t)=x(nT)(t-nT0Tx(t)=x(t)*hror(2)xo(t)=xp(t)*ho(t)=x(nT)ho(t-nTXr(Xo(jw)Hr(X(jw)=X(jw)H(jw)=wH( X(w-kwwH0(jw)=2sin(wT/2)e-jwT/0,w‡T/H(jw),w£H(jw)=X(w-kwX(jw)=Tk=-Chapter
11
x(t)
1x(t)
CcH2(jH2(j
H21
c
xs(t)= pT
xr(t)=xs(t)*hrX(jw)X(jw)=1X(jw)*P(jw)aX(w-kw(jw)((jw)=¥1/ao,w£H(jw)0,w‡x(t)x(t) ajk0y(t) aH(jk0kk0xx(t) akH(jkw0[(1)k,kaT2,0kLL101k3KeywordsforChapter(1)c(t)=KeywordsforChapter(1)c(t)=e InTime InFreq.Y(jw)=X(jw-jwcx(t)=y(t)cX(jw)=Y(jw+jwcy(t)=x(t)ejwctH(H2(jk0
H1(jk0
(
)
CCCC10H(1,k20)0000LLk101 4Y(jw)=1Y(jw)=1X(jw-jw)+1X(jw+jw2c2c(2)c(t)=cos(wct)cos(wcty(t)=x(t) w(t)=y(t)cos(wc
*
W(jw)=1Y(jw-jw)+1Y(jw+jw =1Y(jw)+1Y(jw-j2w)+1Y(jw+j2w y(t)ay(t)aH(k1jk0013kk
ae
y2
k1
akH2
)e1
4sinkaek
k KeywordsKeywordsforChapterKeypointsLTanditsROC roertiesandLTILT(PartialFractionApplicationofLTSystemanalysis Chapter
X(j x(t)
nT
X(j)T
k
T
T1
x(t)
cH2(H2(jH2(j
cBlockDiagramY(
)X
T
H(k
2)
T
TT2 TT
T
(kT)
T
T
T
y1(t)
t)]
y2(t)
WaveformintimeContainingTime0x(t-t)‹LTfie-st0X(s),0es0tx(t)‹fiX(s
s0),X(s)
e-( (s+1)2+
‹ Examplex(Examplex(t)(sint)sin(t/x(t)(sint)(sin(t/2))X(j)1FsintFsin(t/2)2tFFsinttFsin(t/2)12120121222012322
Homework4.10(a)
x1(t)
(t)2
X1(jw)
2(x(t)
(sint
t2(sint)4dt
x(t)FT
dX(
G(j) Qg(t)
tx(t)
t(sint
212
g(t)
dt
2
G(
)2
21
t2(sint)4dt2
Time
1X(sx(at)‹
x*(t) ‹TfiX*(s*), x(t)is X*(s)=X(s*)x1(t)*x2(t)‹fiX1(s)X2(s),ContainingR1HomeworkHomeworkHomeworkHomeworkHomeworkdx(t)
‹
sX(s),Containinguk(t)«sk,Integrationinthetime x( ‹LTfi1X(s), ContainingChapterChapterXX(s)(s)2,Re{s}1et2(t1)u(t
e(22X(s)
es
es
0
x(t)?Homework9.44,ChapterChapterHomeworkX(z)
2z1),
2
x[n]?XX(z)11z,z1Ifx(t)=0,fort<sfi+)
.ItsLTROC:Re{s}>s1tfisfiy(t)
(2
3cos
sin10t)[sin
h(t)d(t)h(t)d(t)siny(t)k(1k1)sin(2kt)]h(t)F{sin(2kt)}j(w2k)j(w2k
e-atu(t)‹-e-atu(-t)
s+1s+
,Re{s}>Re{-a,Re{s}<Re{-aa:ReIm,Complex,0,
tu(t) T 0sinwtu(t) LT0
00
s2 x1(t)x1(t)x1((t3))x2(t)
letu(t)
‹Tfi1s1
-u(-t)‹T
sd(t)‹Tfi Re}:theentires- d(t-nT)‹ e-nsT=1/(1-e-sT x(t)x(t)cos(t) 2e2y(t)1H(j)ejt1H(j)e220 H0 H(sLTI,h(t0ses0t
n]
(z)n
y(t)H(z)(z
z0 zyy[n]x[n]y1[n(z)
Y(z)
y[n]X(z)HX(z)H(z)Y(z)
211z1211z1z211
y[n]y[n]x[n]1y[n1210
11z2
(z)
12
z1
zsbsm+b sm-1+b m-2+L+bs+bX(s)= s(s
1)r(s-r+1)(s-r+2)L(s-n=
+L+
+L+)1)(s-)1)
(s
1
(s-1
s-r
s-i Ai‹ILT
1
i-Aelitu(-iDX(s)=[Asm-n+Asm-n-1+L+ s+ +N1D‹
m-
m- 1
(s)dddtm-
=m(t)
d)
BlockdiagramofRational22 y(BlockdiagramofRational22
y(t)+2y(t)=2
x(t)+4
x(t)-YY(s)1s2+3s+StepY(s)=(2s2+4s-6)Y s
s
2s2+4s-
-
Y
Fs-s
Zs1s1KeywordsKeywordsforChapterKeyZTanditsROC roertiesandZTIZT(PartialFractionExpansion/PowerSeriesApplicationofZTSystem BlockDiagramax[n]+bx[n]‹fiaX1(z)+bX2( Time Contains -x[n-n0]‹fi X(z),zx[n]zx[n]ZTTfiX(z/z0X(e-jω0z),‹ ‹
Xz),RTime x*[n] fiX*(z*),Forx[n]isX(z)X*(z*)Zeros,polesTheConvolutionProx[n]*x[n]‹fiX(z)
(z)
R1dfi
X(z),Ifx[n]=0, n<0.ROC:|z|>r1
x[0]=z¥X(z),TypicalZTanu[n]
‹T
,z>
u[-n-1]
T
,z< 2
,z>-u[-n-1]‹T
1-
-1,z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南农业大学东方科技学院《插画设计》2022-2023学年第一学期期末试卷
- 湖南科技学院《热力学及统计物理》2023-2024学年第一学期期末试卷
- 职中二项式定理课件
- 宏观习题集12年下答案(南京大学第二专业)
- 2024年中国铝制气动元件市场调查研究报告
- 2024至2030年中国双通道全自动带式检针器行业投资前景及策略咨询研究报告
- 2024至2030年中国二氧化硫钢瓶行业投资前景及策略咨询研究报告
- 2024至2030年中国电线接头行业投资前景及策略咨询研究报告
- 2024至2030年中国汽车内饰革行业投资前景及策略咨询研究报告
- 2024至2030年中国普通型电子冷胆行业投资前景及策略咨询研究报告
- 2022年二年级上册语文复习计划
- 成都市家庭装饰工程施工合同模板
- 学术报告厅舞台灯光音响系统项目工程施工技术方案及技术措施
- JJF 1318-2011 影像测量仪校准规范-(高清现行)
- 日常生活活动能力(ADL)PPT幻灯片课件
- 动火安全作业票填写模板2022年更新
- 建设工程监理概论(PPT)
- 闸室及交通桥施工方案
- 加强民航空管设施建设实施方案
- 读者文摘精选100篇【文摘】
- (高清正版)T-CAGHP 032—2018崩塌防治工程设计规范(试行)
评论
0/150
提交评论