教程Signalssystems 2015复习练习_第1页
教程Signalssystems 2015复习练习_第2页
教程Signalssystems 2015复习练习_第3页
教程Signalssystems 2015复习练习_第4页
教程Signalssystems 2015复习练习_第5页
已阅读5页,还剩196页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

x(t)X

Fourier Laplace

Freuenc

X

Zjw)X(z),ReviewandExercisesforSignalsandSystems ZC- x(t)X

X(s),

Fourier

Laplace

FreuencD-

X

Zjw)

X(z),

ZTimeDomain Freq.Domain(Ch1,Ch2) x[n]/ X[ejw]/X(Fourier H[ejw]/H(TimeDomain Freq.Domain(Ch1,Ch2) (Ch3,Ch4…Ch8)

x[n]

x(t)

Fourier

X( H[ejw]/H(Time ComplexFreq.(Ch1,

(Ch9,x[n]/ X(z),ROC/X(s), H(z),ROC/H(s),Time ComplexFreq.(Ch1,

(Ch9,x[n]

x(t)

X(z),ROC

h(t)

H(z),

/H

KeKewordsforChater (1) (2) inthetime (3) (3) (4)(4)Even/Odd (5)LinearKeKewordsforChater (1) (2) inthetime (3) (3) (4)(4) (5)Exponetial(Periodicalx(t)=C

x[n]=C(x(t)=ej0t (x[n]=ej0nUnitSample(t)

fort

,

[n]

n3

n

u(t)

tt

u[n]

nnx(t)=C x[n]=C(x(t)=ejw0t (x[n]=ejw0nUnitSampled(t)=0,fort„,

d

n„3

n=

t><KeywordsKeywordsforChapterLTIsstemAkindof icalssystem UnitImpulseConvolutionSum/IntegralLTIsystemDescribedbyLinearConstant-CoefficientDifferenceandDifferentialEquation(LCCDE)

(ConditionofInitialBlockDiagramu[n]

n n0UnitUnitImpulsexxn=UnitUnitimpulsex[n]x[n]x[k][nkkkkLTI:hk[n]=h[n-KeywordsKeywordsforChapterLTIsstemAkindof icals UnitImpulseConvolutionSum/IntegralDescribedbyLinearConstant-CoefficientDifferenceandDifferentialEquation(LCCDE)(LTI,causal) (ConditionofInitialRest)BlockDiagramRepresentation Convolution

k

[nk]

y[n]

k

k=x[n]*x(x(t)Convolutiony(t)x()h(t(Input:Sumofunit=x(t)*(Output:SumofunitimpulsesCalculationofConvolutionSum/ConvolutionIntegralIndependentvariablereplace:x[n]x[k],h[n]h[k]TimeInversalTimeShiftFour

h[k]h[-k]h[n-Multiplication:

y[n]

kFour

Independentx(t)x(),h(t)h()Transformationofinh():h()h(-)h(t- x()h(t-

y(t)

)dxxn=dUnitUnitimpulseProertiesofLTISDiscrete Continuous(1)x[n]*h[n]=h[n] x(t)*h(t) h(t)2xn*{h1n+h2 x(t)

Notes:OnlyforLTI h(t)=k|h[k]|k|h()|d

h[n]=0forn<0h[n]*h1[n]=[n]

h(t)=0fort<0h(t)*h1(t)=(t)TypicalTypicalLTISystemanditsUnitImpulseDiscrete Continuous

Identityht=

x[n][n]

y(t)

x(t)(t)

Gain y[n]

x[n]K[n]

y(t)

x(t)

(t)

yy[n]x[n][nn]x[nn00y(t)x(t)(tt)x(tt ¥Convolution

[n-k]

=¥¥

=x[n]*x(t)

Convolution y(t)

(Input:Sumofunit

=x(t)*(Output:Sumofunitimpulsesy[n]

x[n]h[n]

x[knkn

y(t)

x(t)h(t)

t1storder 1storderth[n]=[n]-[n- x[n]([n][nx[n]x[ny(t)x(t)d(t)dx(t)ConvolutioninteralwithSin x

*(t)

x(t)x

*

t0)

t0

t1)*

t2)

t2

x(t)*

'(t)

55xt*u(t)((t)t(6)x(t)*h x'ttCalculationofConvolutionSum/ConvolutionIndependentvariablereplace:fix[k],h[n] fih[k]TimeInversalTimeShift:Four fih[- fih[n-Four

+ fix(t),h(t) Transformationoftinh(t): fih(-t) fih(t- x(t)h(t-t)ConvolutionConvolution

Integrating:y(t)

ConvolutionConvolutionProertiesofLTISDiscrete Continuous(1)x[n]*h[n]=h[n]*x[n] x(t)*h(t)= h(t)*x(t)2xn*{h1n+h2n x(t)*{h1(t)+h2(t)} h(t)=k

h[n]=0forn<0

h(t)=0fort<0SolutionSolutionforLCCDE(DifferenceRecursiveequationyy[n]x[n]1y[n2Initialcondition

=(ConditionofInitial x(n)

n

y(n)

nTypicalTypicalLTISystemanditsUnitImpulseDiscretetime Continuoustime Identitysystemht=dt Gain y(t)=x(t)* (t)=Time sBlockBlockDiagramfoy[n]=x[n]*h[n]=x[k

y(t)=x(t)*h(t)=-¥1storderDifference 1storderDifferentialh[n]=d[n]-d[n-1] (t)a

(t)

bx(t)KewordsforChaterFourierSeriesKewordsforChaterFourierSeriesk

ae

arecalledFourierSeriescoefficientsspectralcoefficientsx(t).~(t)Fak kTx(t)ejk0tdt(AnalysisTConvolutioninteralwithSin xt*d(t)=x(t) xt*d(t-t0)=x(t-t0x(t-t1)*d(t-t2)=x(t-t1-t2x(t)*d'(t)=xFSinSignalFSinSignal0x(t)0a0kFS(Synthesis(Time kkTx(t)eT0tdt(Analysis(Freq.xt*u(t)=x(-1)(t) (6)x(t)*h =

FSFSinLTIsystem

Basicx(t)

k

ak

akH(

k

Basic

akH

HH(H(jw)~H(jw)~ConvolutionConvolutionFILTERFILTER(filtering

y(t)

x(t)

dx(t)HH(jw) KewordsforChaterFourierTransform(FT): x(t)e

FTx(t)

1

X(jX(j)X(j)ejX(ConvolutionConvolution7(9)7(9)PropertiesofFourierTime/Freq.Time/Freq.TimeTimeConjugationanditsX(jt)2x((Convolution+Parseval’sParseval’s(j(00ax(t)by(t)aX(j)(j(00

t)ejt0X

ej0tx(t)x*(t) x'(t)dx(t)jX(jX*(jjtx(t) x(at) X(ja

x(t)

dt1 |X

d

SolutionSolutionforLCCDE(Differencey[n]=y[n]=x[n]+1y[n-Initialcondition(LTI,causal)=(ConditionofInitial x(n)= n< y(n)= n<

TypicalFTpairs(7x(t t

X(j)

a

(a at

eat

(t0x(t

u(t

(t01x(t)

2 Xt

j)

a2x(t)

eat

,a0 2X2X(11f(t)10t0BlockBlockDiagramfo1x(t)

2

t

W/

x(t)

1X

W

W

sincsinc()sin(

sa()21t (t)(j)ndt2(-j)nndtd

(a

,(a

sign(t)1

u(t)

11jsign()Fj(j( (t)+a

(t)=TheTheFTsoftypicalperiodicsignalsx(t)x(t)X(j)2sink k0)2Sinusoidalsikx(t)sin0tX(F00)0x(t)0

costX

0xx(t)a0tFkX(j)ak0)kk(3)Impulsex(t)(tnT)X(j)2TkTKewordsforChaterForsignalx(t)

(

jΦ)e

A

x(t)X( X(

)

X(

)|

jX(|X(

)|

MagnitudeSpectrumPhaseSpectrumKewordsforChaterFourierSeries ae (SynthesisTTx(t)e-jkw0tdt(AnalysisFF~(t)arearecalledFourierSeriescoefficientsspectralcoefficientsx(t).ForLTIsystemh(t)X(j

|H

Magnitude

H(jw)

PhaseY(jw)

X( H(

X(jw)

LTIsystem’sinfluence:Gain&Phase(T,wKeywordsforChapterKeywordsforChapter(Shannon)SamplingLetx(t)beaband-limitedsignalX(j)=0for||>M.Thenx(t)isuniquelydeterminedbyitssamplesx(nT),n=0,1,2,…,ifXX唯一恢p(j)x唯一恢ps≥2M,where2MiscalledNyquistRate.(Minimumdistortionlesssamplingfrequency)FSFSinLTIsystem Basicx(t)kk

ae

¥k=-¥Basic¥ akH(jkw033MethodsofSignalSamplingand1)Impulse-trainSamplingandxp(t)x(txp(t)x(t)p(t)x(nT)(tx

H(

x(t) xr(t)

xp(t)sin((tnT)/T)1T1

x(nT) Xp(jw) X(wkws

(tnT

H(Tk

X(jw)

Xp(jw)H(

(wMwcwswMH(H(jw)~—H(jw)~SamplingSamplingwithZero-orderxp(xp(t)x(nT)(tnT1k tx(t)x(t)h(t)ror(2)xo(t)xp(t)ho(t)x(nT)ho(tnTH(jw)T/H(jw),wroc0,wcjwT/2sin(wT/wH0(jw)ks0H( X(wkw0p0swX(jw)X(jw)H(jw)sX(wkwkTpX(jw)Xr( Xo(jw)Hr(FILTERFILTER(filtering x(t)H(jw)=3)Sampling3)Samplingwithaperiodicnarrowsquarex(t)x(t)S1tTxs(t)x(t)pTxr(t)xs(t)hrX(jw)sX(jw)P(T aX(wkwksX(jw)X(jw)H(rsrkPT(jw)2ak(wkwskc0,wrH(jw)ao,w KeywordsforKeywordsforChapter(1)c(t)e y(t)x(t)c(t)InTime InFreq.X(jw)Y(jwjwcx(t)y(t)eY(jw)X(jwjwcy(t)x(t)ejctKewordsforChater:-- FT

x(t)ejwtx(t)

1

‹fi(w)F 2p-(2)c(t)cos(wc(2)c(t)cos(wct)cos(wct YY(jw)1X(jwjw)1X(jwjw2c2cy(t)x(t)w(t)y(t)cos(wct)*h(t)2sinwW(jw)1Y(jwjw)1Y(jwjw2c2c. tc4c421Y(jw)1Y(jwj2w)1Y(jwj2wx(t)[1cos(2wct)]7(9)7(9)PropertiesofFourierTime/Freq.Time/Freq.TimeTimeConjugationanditsfi(Convolution+KeywordsKeywordsforChapterKeypointsLTanditsROC roertiesandLTILT(PartialFractionApplicationofLTSystemanalysis BlockDiagramPropertiesPropertiesofLaplace-a1t)

aX1(s)

Time

Containing

t0

e

X(s),Shiftingins-es0t

x(t)

X(s,e(,e((s1)2

s0

X(s)Re{sX(s)

2

2(t

)fi)fiejw0tx(t)fi0fi fi x(at)fi1ax(t)+by(t)fi)+bY( xx'(t)=dx(t)fi f

+¥|x(t)|2dt=

|X(jw)|2 Time x(at)

X x*(t)

X*(s*), x(t)

is

X*(s)

X(s*)ZerospolesTheConvolutionx1(t)

x2(t)

X1(s)

2(s),ContainingR1 2p-Differentiationinthetimedx(t)

sX(s),

Containinguk(t)

sk,Integrationinthetimetx(t

LT

1X(s),sContaining

TypicalFTpairs(7x(t ‹t

X(jw)=a+

(a>x(t)=e-atu(t

(t‡0 (t<01x(t) 2‹fiXt

jw)=a2+wIfx(t)0,forIfx(t)0,fort.ItsLTROC:Re{s}>19)Differentiationinthes-tx(t) dX(s),Rteatu(t) -d1dss1(ntn1eatu(t)LT]11(sa)2,Re{s}(sa)n,Re{s}Re{x(t)=e-at ,a>55TypicalLT(a:1eatu(t)eatu(t)sa,Re{s}Re{a1s,Re{s}Re{aaReImComplex0 0tu(t) ss2200tu(t)0s2202X2X(‹1f1f(t)‹F(jw)=

letu(t)

s

u(t)

1 s

0(t-t)0

Re}:theentires-

nT

ensT

esTn0

n0

1

‹t

p0pp0pW/

x(t)=p

1X(jwt sinc()

ILT-PartialFractionn>m,RationalX(s),ILT-PartialFractionn>m,RationalX(s),D(s)=0hasthesame

sm1

sm2

LbsX(s)

m2 (s

)r(s

)(s

)L(s n1r 1r(s

(s

)r

L

(s

L ILT

(r

t

Aeitu(t)ii…iin≤m,Rational

(r

t

Aeitu(t)X(s)[Asmn

smn1

L

s

N1(s)

dmn

mn

mn1

dtmn

mn(t)

(t)w Wsa()=BlockBlockdiagramofRationalH(s)H(s)Y(s)X(s)Step1s23s)(2s24s2

y(t)

2y(t)2

x(t)4

x(t)

6x(t)22StepStep1Y(s)(2s24s6)Y(s)s23s1X(s)1Y(s)

>‹1+t‹1+tfi‹fiddt«(jw)t«2p(-dd(w

d(w)+sign(t)=+1(t>0)‹fi

u(t)1s1X1s1

s2Y

1s1s

4s

Y

Y(s)X(s)

E(s)

F(s)ss

Z(s)s1s1TheTheFTsoftypicalperiodicsignals(1)Periodicsquarex(t)=cosw0t‹fiX(jw)=pd(w+w0)+pd(w-w0KeywordsKeywordsforChapterKeyZTanditsROC roertiesandZTIZT(PartialFractionExpansion/PowerSeriesApplicationofZTSystem H(z)-定性/BlockDiagram(3)ImpulseF

2p x(t)=

d(t-nT)

fiX(jw)

Tk=- xx(t)=ae‹fiX(jw)=a2pd(w-kwPropertiesPropertiesofZ-ax[n]

aX1(z)

Time

Contains

z

X(z),R是否包含0,∞有可能变化Scalinginz-zzn0x[n]X(z/z0ejω0nx[n]X(ejω0z),

X(z),KewordsforChaterAej(wt+Φ)=(AejΦ)eForsignalx(t)Acos(wtx(t)‹fiX( X( )=|X( |X(—X

)|--

MagnitudeSpectrumPhaseSpectrumTimexTimex[n]X(1z x*[n]

X*(z*),

isX(z)

X*(z*

Zerospoles(zTheConvolution(z

x2

X1(z)X

R1∩R2Differentiationinthez-

z

X(z),TheInitial-ValueIfx[n]

n

ROC:|z|>r1zzx[0]limX(z),ForLTIsystemh(t)

H(jw)

|H(jw)|---Magnitude—H(jw)---PhaseY(jw)

—Y(jw)=—X(jw)+—H(LTIsystem’sinfluence:Gain&PhaseTypicalZTanu[n]

1az

,zanu[

,z

1az2

1z

,zu[n

1z

,z

z

,zu[nm

1z

z1z

,z

u[(nm)? 1

)zcos(ω0n)u[n] ,

1

)z)z

z2z1

u[n] ,0 10

)z1

z2

δ

0z

z

]

z

0z0 n0(

Rinclude)n0<0,RincludeKeywordsKeywordsforChapterLetx(t)beaband-limitedsignalX(jw)=0for|w|>wM.Thenx(t)isuniquelydeterminedbyitssamplesX 唯一恢fiXX 唯一恢fiXj)px( 唯一恢fipwws≥2wM,where2wMiscalledNyquistRate.(Minimumdistortionlesssamplingfrequency)nanu[nanu[n]az(1az1)2,z1anu[n1]ZTX(z)ln(1az1)nzPartialFractionX(z)m i11aiinA(a)u[m/inA(a)mx[n]XX(z)ammx[n]a[nmm33MethodsofSignalSamplingandImpulse-trainSamplingand x

H(

p xr(t)=xp(t) Xp(jw)=

=Tx(nT)

H(sTk=- X(jw)=s

p(jw)H(T TBlockdiagramofRationalBlockdiagramofRationaly[n]1y[n1]1y[n2]x[n]7x[n1]1x[n4842H(z)Y(z)X(z)17z11z111z11z )(17z11z2811z11z42448Y(z)1StepStepY(z)1X(z)z18z11411StepY(z)4z12z2)Y(z)1

(wM<wc<ws-wMStep

Step1

z1

z

14

z12

z2

zz1444z118182SamplingSamplingwithZero-orderxp(xp(t)=x(nT)(t-nT0Tx(t)=x(t)*hror(2)xo(t)=xp(t)*ho(t)=x(nT)ho(t-nTXr(Xo(jw)Hr(X(jw)=X(jw)H(jw)=wH( X(w-kwwH0(jw)=2sin(wT/2)e-jwT/0,w‡T/H(jw),w£H(jw)=X(w-kwX(jw)=Tk=-Chapter

11

x(t)

1x(t)

CcH2(jH2(j

H21

c

xs(t)= pT

xr(t)=xs(t)*hrX(jw)X(jw)=1X(jw)*P(jw)aX(w-kw(jw)((jw)=¥1/ao,w£H(jw)0,w‡x(t)x(t) ajk0y(t) aH(jk0kk0xx(t) akH(jkw0[(1)k,kaT2,0kLL101k3KeywordsforChapter(1)c(t)=KeywordsforChapter(1)c(t)=e InTime InFreq.Y(jw)=X(jw-jwcx(t)=y(t)cX(jw)=Y(jw+jwcy(t)=x(t)ejwctH(H2(jk0

H1(jk0

(

)

CCCC10H(1,k20)0000LLk101 4Y(jw)=1Y(jw)=1X(jw-jw)+1X(jw+jw2c2c(2)c(t)=cos(wct)cos(wcty(t)=x(t) w(t)=y(t)cos(wc

*

W(jw)=1Y(jw-jw)+1Y(jw+jw =1Y(jw)+1Y(jw-j2w)+1Y(jw+j2w y(t)ay(t)aH(k1jk0013kk

ae

y2

k1

akH2

)e1

4sinkaek

k KeywordsKeywordsforChapterKeypointsLTanditsROC roertiesandLTILT(PartialFractionApplicationofLTSystemanalysis Chapter

X(j x(t)

nT

X(j)T

k

T

T1

x(t)

cH2(H2(jH2(j

cBlockDiagramY(

)X

T

H(k

2)

T

TT2 TT

T

(kT)

T

T

T

y1(t)

t)]

y2(t)

WaveformintimeContainingTime0x(t-t)‹LTfie-st0X(s),0es0tx(t)‹fiX(s

s0),X(s)

e-( (s+1)2+

‹ Examplex(Examplex(t)(sint)sin(t/x(t)(sint)(sin(t/2))X(j)1FsintFsin(t/2)2tFFsinttFsin(t/2)12120121222012322

Homework4.10(a)

x1(t)

(t)2

X1(jw)

2(x(t)

(sint

t2(sint)4dt

x(t)FT

dX(

G(j) Qg(t)

tx(t)

t(sint

212

g(t)

dt

2

G(

)2

21

t2(sint)4dt2

Time

1X(sx(at)‹

x*(t) ‹TfiX*(s*), x(t)is X*(s)=X(s*)x1(t)*x2(t)‹fiX1(s)X2(s),ContainingR1HomeworkHomeworkHomeworkHomeworkHomeworkdx(t)

sX(s),Containinguk(t)«sk,Integrationinthetime x( ‹LTfi1X(s), ContainingChapterChapterXX(s)(s)2,Re{s}1et2(t1)u(t

e(22X(s)

es

es

0

x(t)?Homework9.44,ChapterChapterHomeworkX(z)

2z1),

2

x[n]?XX(z)11z,z1Ifx(t)=0,fort<sfi+)

.ItsLTROC:Re{s}>s1tfisfiy(t)

(2

3cos

sin10t)[sin

h(t)d(t)h(t)d(t)siny(t)k(1k1)sin(2kt)]h(t)F{sin(2kt)}j(w2k)j(w2k

e-atu(t)‹-e-atu(-t)

s+1s+

,Re{s}>Re{-a,Re{s}<Re{-aa:ReIm,Complex,0,

tu(t) T 0sinwtu(t) LT0

00

s2 x1(t)x1(t)x1((t3))x2(t)

letu(t)

‹Tfi1s1

-u(-t)‹T

sd(t)‹Tfi Re}:theentires- d(t-nT)‹ e-nsT=1/(1-e-sT x(t)x(t)cos(t) 2e2y(t)1H(j)ejt1H(j)e220 H0 H(sLTI,h(t0ses0t

n]

(z)n

y(t)H(z)(z

z0 zyy[n]x[n]y1[n(z)

Y(z)

y[n]X(z)HX(z)H(z)Y(z)

211z1211z1z211

y[n]y[n]x[n]1y[n1210

11z2

(z)

12

z1

zsbsm+b sm-1+b m-2+L+bs+bX(s)= s(s

1)r(s-r+1)(s-r+2)L(s-n=

+L+

+L+)1)(s-)1)

(s

1

(s-1

s-r

s-i Ai‹ILT

1

i-Aelitu(-iDX(s)=[Asm-n+Asm-n-1+L+ s+ +N1D‹

m-

m- 1

(s)dddtm-

=m(t)

d)

BlockdiagramofRational22 y(BlockdiagramofRational22

y(t)+2y(t)=2

x(t)+4

x(t)-YY(s)1s2+3s+StepY(s)=(2s2+4s-6)Y s

s

2s2+4s-

-

Y

Fs-s

Zs1s1KeywordsKeywordsforChapterKeyZTanditsROC roertiesandZTIZT(PartialFractionExpansion/PowerSeriesApplicationofZTSystem BlockDiagramax[n]+bx[n]‹fiaX1(z)+bX2( Time Contains -x[n-n0]‹fi X(z),zx[n]zx[n]ZTTfiX(z/z0X(e-jω0z),‹ ‹

Xz),RTime x*[n] fiX*(z*),Forx[n]isX(z)X*(z*)Zeros,polesTheConvolutionProx[n]*x[n]‹fiX(z)

(z)

R1dfi

X(z),Ifx[n]=0, n<0.ROC:|z|>r1

x[0]=z¥X(z),TypicalZTanu[n]

‹T

,z>

u[-n-1]

T

,z< 2

,z>-u[-n-1]‹T

1-

-1,z

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论