版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省湖州市吴兴区十学校数学九年级第一学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°2.若反比例函数的图象经过,则这个函数的图象一定过()A. B. C. D.3.若.则下列式子正确的是()A. B. C. D.4.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4 B.3 C.2 D.15.如图,的直径的长为,弦长为,的平分线交于,则长为()A.7 B.7 C.8 D.96.把抛物线向右平移3个单位,再向上平移2个单位,得到抛物线().A. B. C. D.7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A. B. C. D.8.如图,⊙O是△ABC的外接圆,连接OC、OB,∠BOC=100°,则∠A的度数为()A.30° B.40° C.50° D.60°9.如图,AB是的直径,点C,D是圆上两点,且=28°,则=()A.56° B.118° C.124° D.152°10.下列说法正确的是()A.一组对边相等且有一个角是直角的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等且互相垂直的四边形是正方形D.对角线平分一组对角的平行四边形是菱形二、填空题(每小题3分,共24分)11.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.12.正八边形的每个外角的度数和是_____.13.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.14.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.15.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作一个圆锥的侧面和底面,则的长为__________.
16.二次函数y=x2-2x+1的对称轴方程是x=_______.17.如图,在平面直角坐标系中,点A是函数图象上的点,AB⊥x轴,垂足为B,若△ABO的面积为3,则的值为__.18.如图,将函数的图象沿轴向下平移3个单位后交轴于点,若点是平移后函数图象上一点,且的面积是3,已知点,则点的坐标__________.三、解答题(共66分)19.(10分)小明和小亮用三枚质地均匀的硬币做游戏,游戏规则是:同时抛掷这三枚硬币,出现两枚正面向上,一枚正面向下,则小明赢;出现两枚正面向下,一枚正面向上,则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.20.(6分)图1和图2中的正方形ABCD和四边形AEFG都是正方形.(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.21.(6分)二次函数图象是抛物线,抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹.其中定点叫抛物线的焦点,定直线叫抛物线的准线.①抛物线()的焦点为,例如,抛物线的焦点是;抛物线的焦点是___________;②将抛物线()向右平移个单位、再向上平移个单位(,),可得抛物线;因此抛物线的焦点是.例如,抛物线的焦点是;抛物线的焦点是_____________________.根据以上材料解决下列问题:(1)完成题中的填空;(2)已知二次函数的解析式为;①求其图象的焦点的坐标;②求过点且与轴平行的直线与二次函数图象交点的坐标.22.(8分)某市有A、B、C三个公园,甲、乙两位同学随机选择其中一个公园游玩.(1)甲去A公园游玩的概率是;(2)求甲、乙恰好在同一个公园游玩的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)23.(8分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).(1)小红摸出标有数3的小球的概率是.(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.(3)求点P(x,y)在函数y=﹣x+5图象上的概率.24.(8分)如图1,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,已知,.(1)求抛物线的解析式;(2)如图2,若点是直线上方的抛物线上一动点,过点作轴的平行线交直线于点,作于点,当点的横坐标为时,求的面积;(3)若点为抛物线上的一个动点,以点为圆心,为半径作,当在运动过程中与直线相切时,求点的坐标(请直接写出答案).25.(10分)解方程:3x(x﹣1)=2﹣2x.26.(10分)网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率;(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?
参考答案一、选择题(每小题3分,共30分)1、C【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【题目详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【题目点拨】本题主要考查平行线的性质,熟悉掌握性质是关键.2、A【分析】通过已知条件求出,即函数解析式为,然后将选项逐个代入验证即可得.【题目详解】由题意将代入函数解析式得,解得,故函数解析式为,将每个选项代入函数解析式可得,只有选项A的符合,故答案为A.【题目点拨】本题考查了已知函数图象经过某点,利用代入法求系数,再根据函数解析式分析是否经过所给的点.3、A【分析】直接利用比例的性质分别判断即可得出答案.【题目详解】∵2x-7y=0,∴2x=7y.A.,则2x=7y,故此选项正确;B.,则xy=14,故此选项错误;C.,则2y=7x,故此选项错误;D.,则7x=2y,故此选项错误.故选A.【题目点拨】本题考查了比例的性质,正确将比例式变形是解题的关键.4、B【解题分析】根据中心对称图形的概念判断即可.【题目详解】矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形.故选B.【题目点拨】本题考查了中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5、B【解题分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.【题目详解】作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB,∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,,∴DA=DB,∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG,∵AC=6,BC=8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7,故选B.【题目点拨】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等,综合性较强,有一定的难度,正确添加辅助线、熟练应用相关知识是解题的关键.6、D【分析】直接根据平移规律(左加右减,上加下减)作答即可.【题目详解】将抛物线y=x2+1向右平移1个单位,再向上平移2个单位后所得抛物线解析式为y=(x-1)2+1.
故选:D.【题目点拨】此题考查函数图象的平移,解题关键在于熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7、C【题目详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为故选C8、C【分析】直接根据圆周角定理即可得出结论.【题目详解】∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC==50°.故选:C.【题目点拨】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.9、C【分析】根据一条弧所对的圆周角是它所对的圆心角的一半可得∠BOC的度数,再根据补角性质求解.【题目详解】∵∠CDB=28°,∴∠COB=2∠CDB=2×28°=56°,∴∠AOC=180°-∠COB=180°-56°=124°.故选:C【题目点拨】本题考查圆周角定理,根据定理得出两角之间的数量关系是解答此题的关键.10、D【分析】根据矩形、正方形、菱形的判定方法一一判断即可;【题目详解】A、一组对边相等且有一个角是直角的四边形不一定是矩形,故本选项不符合题意;B、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意;C、对角线相等且互相垂直的四边形不一定是正方形,故本选项不符合题意;D、对角线平分一组对角的平行四边形是菱形,正确.故选:D.【题目点拨】本题考查矩形、正方形、菱形的判定方法,属于中考常考题型.二、填空题(每小题3分,共24分)11、【分析】已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去a得出x、y的关系式.【题目详解】解:二次函数中,顶点坐标为:,设顶点坐标为(x,y),∴①,②,由①2+②,得,∴;故答案为:.【题目点拨】本题考查了二次函数的性质,根据顶点式求顶点坐标的方法是解题的关键,注意运用消元的思想解题.12、360°.【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案.【题目详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.【题目点拨】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.13、1【分析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【题目详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.14、相离【解题分析】r=2,d=3,则直线l与⊙O的位置关系是相离15、cm.【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【题目详解】解:设AB=xcm,则DE=(6-x)cm,
根据题意,得解得x=1.
故选:1cm.【题目点拨】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、1【分析】利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.【题目详解】∵-=-=1,∴x=1.故答案为1【题目点拨】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.17、-6【解题分析】根据反比例函数k的几何性质,矩形的性质即可解题.【题目详解】解:由反比例函数k的几何性质可知,k表示反比例图像上的点与坐标轴围成的矩形的面积,∵△ABO的面积为3,由矩形的性质可知,点A与坐标轴围成的矩形的面积=6,∵图像过第二象限,∴k=-6.【题目点拨】本题考查了反比例函数k的几何性质,属于简单题,熟悉性质内容是解题关键.18、或【分析】根据函数图象的变化规律可得变换后得到的图象对应的函数解析式为,求出点的坐标为,那么,设的边上高为,根据的面积是3可求得,从而求得的坐标.【题目详解】解:将函数的图象沿轴向下平移3个单位后得到,令,得,解得,点的坐标为,点,.设的边上高为,的面积是3,,,将代入,解得;将代入,解得.点的坐标是,或.故答案为:,或.【题目点拨】本题考查了坐标与图形变化-平移,三角形的面积,函数图像上点的特征,由平移后函数解析式求出点的坐标是解题的关键.三、解答题(共66分)19、此游戏对双方公平,理由见详解.【分析】用列表法或树状图将所有可能出现的情况表示出来,然后计算“两枚正面向上,一枚正面向下”和“出现两枚正面向下,一枚正面向上”的概率是否相等,如果相等,则说明游戏公平,反之则不公平.【题目详解】答:此游戏对双方公平.根据树状图或列表分析抛掷三枚硬币可出现8种情况,其中“两正一反”和“两反一正”的情况各有3种,所以“出现两枚正面向上,一枚正面向下”的概率和“出现两枚正面向下,一枚正面向上”的概率都是.【题目点拨】本题主要考查用树状图或列表法求随机事件的概率,能够用树状图或列表法将所有可能出现的情况表示出来是解题的关键.20、(1)AM=DE,AM⊥DE,理由详见解析;(2)AM=DE,AM⊥DE,理由详见解析.【解题分析】试题分析:(1)AM=DE,AM⊥DE,理由是:先证明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根据直角三角形斜边的中线的性质得AM=BG,AM=BM,则AM=DE,由角的关系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作辅助线构建全等三角形,证明△MNG≌△MAB和△AGN≌△EAD可以得出结论.试题解析:(1)AM=DE,AM⊥DE,理由是:如图1,设AM交DE于点O,∵四边形ABCD和四边形AEFG都是正方形,∴AG=AE,AD=AB,∵∠DAE=∠BAG,∴△DAE≌△BAG,∴DE=BG,∠AED=∠AGB,在Rt△ABG中,∵M为线段BG的中点,∴AM=BG,AM=BM,∴AM=DE,∵AM=BM,∴∠MBA=∠MAB,∵∠AGB+∠MBA=90°,∴∠MAB+∠AED=90°,∴∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:如图2,延长AM到N,使MN=AM,连接NG,∵MN=AM,MG=BM,∠NMG=∠BMA,∴△MNG≌△MAB,∴NG=AB,∠N=∠BAN,由(1)得:AB=AD,∴NG=AD,∵∠BAN+∠DAN=90°,∴∠N+∠DAN=90°,∴NG⊥AD,∴∠AGN+∠DAG=90°,∵∠DAG+∠DAE=∠EAG=90°,∴∠AGN=∠DAE,∵NG=AD,AG=AE,∴△AGN≌△EAD,∴AN=DE,∠N=∠ADE,∵∠N+∠DAN=90°,∴∠ADE+∠DAN=90°,∴AM⊥DE.考点:旋转的性质;正方形的性质.21、(1)①;②;(2)①;②和【分析】(1)直接根据新定义即可求出抛物线的焦点;(2)①先将二次函数解析式配成顶点式,再根据新定义即可求出抛物线的焦点;②依题意可得点且与轴平行的直线,根据平行于x轴的直线上的点的纵坐标相等,将点F的纵坐标代入解析式即可求得x的值,从而得出交点坐标.【题目详解】(1)①根据新定义,可得,所以抛物线的焦点是;②根据新定义,可得h=−1,,所以抛物线的焦点是;(2)①将化为顶点式得:根据新定义,可得h=−1,,所以可得抛物线的焦点坐标;②由①知,所以过点且与轴平行的直线是,将代入得:,解得:或,所以,过点且与轴平行的直线与二次函数图象交点的坐标为和.【题目点拨】本题考查了新定义、二次函数的顶点式、求解直线与抛物线的交点坐标,解决这题的关键是理解新定义求抛物线的焦点.22、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)利用列举方法找出所有的可能情况,再找两位同学恰好在同一个公园游玩的情况个数,即可求出所求的概率.【题目详解】解:(1)甲去A公园游玩的概率为;故答案为:.(2)列树状图如下:共有9种等可能结果,其中甲、乙恰好在同一个公园游玩的有3种,∴其概率为.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件的结果数目,然后利用概率公式计算事件的概率.23、(1);(2)共12种情况;(3)【分析】(1)根据概率公式求解;(2)利用树状图展示所有12种等可能的结果数;(3)利用一次函数图象上点的坐标特征得到在函数y=-x+5的图象上的结果数,然后根据概率公式求解.【题目详解】解:(1)小红摸出标有数3的小球的概率是;(2)列表或树状图略:由列表或画树状图可知,P点的坐标可能是(1,2)(1,3)(1,4)(2,1)(2,3),(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种情况,(3)共有12种可能的结果,其中在函数y=−x+5的图象上的有4种,即(1,4)(2,3)(3,2)(4,1)所以点P(x,y)在函数y=−x+5图象上的概率==.【题目点拨】本题考查的是概率,熟练掌握列表或画树状图是解题的关键.24、(1);(2);(3)点为或【分析】⑴根据,求出B、C的坐标,再代入求出解析式;⑵根据题意可证△PED∽△BOC,再利用相似三角形的面积比等于相似比的平方求出△PED的面积;⑶根据二次函数图象的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国硬木室内门行业市场发展趋势与前景展望战略分析报告
- 2023年智慧物流项目综合评估报告
- 2024年重有色金属矿产:锌矿项目成效分析报告
- 2024年皮革、毛皮、羽绒制品项目评估分析报告
- 2024年聚合物多元醇项目综合评估报告
- 2023年厚、薄膜混合集成电路及消费类电路项目成效分析报告
- 山东省泰安三中、新泰二中、宁阳二中三校2025届物理高二上期末综合测试模拟试题含解析
- 2025届吉林省长春汽车经济技术开发区第六中学物理高一上期末检测试题含解析
- 湖北省随州市第二高级中学2025届物理高三第一学期期中调研模拟试题含解析
- 湖北省荆、荆、襄、宜四地七校考试联盟2025届高二物理第一学期期末检测模拟试题含解析
- 2024年全国统考“营养师或营养指导员”相关知识考前试题库与参考答案
- 2024CSCO结直肠癌诊疗指南解读
- 是谁杀死了周日
- 国家开放大学《管理英语4》章节测试参考答案
- 汽车尾气排放检测操作标准
- 塔吊基础下换填地基设计
- 《中医基础理论肾》PPT课件.ppt
- 顾问咨询服务合同
- 事故安全培训案例(一)
- 考题六年级数学上册看图列方程计算专项北师大版
- 高压线迁移施工方案
评论
0/150
提交评论