版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市双清区2024届九年级数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35° C.30° D.45°2.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,8,9的中位数是6C.从2000名学生中选出200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是23.如图,将小正方形AEFG绕大正方形ABCD的顶点A顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG、DE相交于点O,再连接AO、BE、DG.王凯同学在探究该图形的变化时,提出了四个结论:①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中结论正确的个数有()A.1个 B.2个 C.3个 D.4个4.某细胞的直径约为0.0000008米,该直径用科学记数法表示为()A.米 B.米 C.米 D.米5.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是A. B. C. D.6.如图图形中,是轴对称图形又是中心对称图形的是()A. B.C. D.7.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“治”相对的面上的汉字是()A.全 B.面 C.依 D.法8.已知点都在反比例函数的图象上,则下列关系式一定正确的是()A. B.C. D.9.在同一坐标系中,一次函数与二次函数的图象可能是().A. B. C. D.10.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)11.如图所示,∠APB=30°,O为PA上一点,且PO=6,以点O为圆心,半径为3的圆与PB的位置关系是()A.相离 B.相切C.相交 D.相切、相离或相交12.如图,厂房屋顶人字架(等腰三角形)的跨度BC=10m,∠B=36°,D为底边BC的中点,则上弦AB的长约为()(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m二、填空题(每题4分,共24分)13.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为,则m=__.14.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,则⊙O的半径的长是______.15.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.16.如图,有一张直径为1.2米的圆桌,其高度为0.8米,同时有一盏灯距地面2米,圆桌在水平地面上的影子是,∥,和是光线,建立如图所示的平面直角坐标系,其中点的坐标是.那么点的坐标是_________.17.如图所示的的方格纸中,如果想作格点与相似(相似比不能为1),则点坐标为___________.18.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F.若点B和点E、点C和F的离地高度分别相同,现消防员将水流抛物线向上平移0.4m,再向左后退了____m,恰好把水喷到F处进行灭火.三、解答题(共78分)19.(8分)如图1,是一种自卸货车.如图2是货箱的示意图,货箱是一个底边AB水平的矩形,AB=8米,BC=2米,前端档板高DE=0.5米,底边AB离地面的距离为1.3米.卸货时,货箱底边AB的仰角α=37°(如图3),求此时档板最高点E离地面的高度.(精确到0.1米,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(8分)某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?21.(8分)如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.22.(10分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F(I)如图①,连接AD,若,求∠B的大小;(Ⅱ)如图②,若点F为的中点,的半径为2,求AB的长.23.(10分)如图,在正方形ABCD中,点M、N分别在AB、BC边上,∠MDN=45°.(1)如图1,DN交AB的延长线于点F.求证:;(2)如图2,过点M作MP⊥DB于P,过N作NQ⊥BD于,若,求对角线BD的长;(3)如图3,若对角线AC交DM,DF分别于点T,E.判断△DTN的形状并说明理由.24.(10分)如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,现有长为米的篱笆,一边靠墙,若墙长米,设花圃的一边为米;面积为平方米.(1)求与的函数关系式及值的取值范围;(2)若边不小于米,这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.25.(12分)现有、两个不透明的盒子,盒中装有红色、黄色、蓝色卡片各1张,盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从、两个盒子中任意摸出一张卡片.(1)从盒中摸出红色卡片的概率为______;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率.26.不透明的袋中有四个小球,分别标有数字1、2、3、4,它们除了数字外都相同。第一次从中摸出一个小球,记录数字后放回袋中,第二次摇匀后再随机摸出一个小球.(1)求第一次摸出的小球所标数字是偶数的概率;(2)求两次摸出的小球所标数字相同的概率.
参考答案一、选择题(每题4分,共48分)1、C【分析】连接,即,又,故,所以;又因为为切线,利用切线与圆的关系即可得出结果.【题目详解】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选C.【题目点拨】本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.2、D【分析】根据调查方式对A进行判断;根据中位数的定义对B进行判断;根据样本容量的定义对C进行判断;通过方差公式计算可对D进行判断.【题目详解】A.了解飞行员视力的达标率应使用全面调查,所以A选项错误;B.数据3,6,6,7,8,9的中位数为6.5,所以B选项错误;C.从2000名学生中选出200名学生进行抽样调查,样本容量为200,所以C选项错误;D.一组数据1,2,3,4,5的方差是2,所以D选项正确故选D.【题目点拨】本题考查了方差,方差公式是:,也考查了统计的有关概念.3、D【分析】由“SAS”可证△DAE≌△BAG,可得BG=DE,即可判断①;设点DE与AB交于点P,由∠ADE=∠ABG,∠DPA=∠BPO,即可判断②;过点A作AM⊥DE,AN⊥BG,易证DE×AM=×BG×AN,从而得AM=AN,进而即可判断③;过点G作GH⊥AD,过点E作EQ⊥AD,由“AAS”可证△AEQ≌△GAH,可得AQ=GH,可得S△ADG=S△ABE,即可判断④.【题目详解】∵∠DAB=∠EAG=90°,∴∠DAE=∠BAG,又∵AD=AB,AG=AE,∴△DAE≌△BAG(SAS),∴BG=DE,∠ADE=∠ABG,故①符合题意,如图1,设点DE与AB交于点P,∵∠ADE=∠ABG,∠DPA=∠BPO,∴∠DAP=∠BOP=90°,∴BG⊥DE,故②符合题意,如图1,过点A作AM⊥DE,AN⊥BG,∵△DAE≌△BAG,∴S△DAE=S△BAG,∴DE×AM=×BG×AN,又∵DE=BG,∴AM=AN,且AM⊥DE,AN⊥BG,∴AO平分∠DOG,∴∠AOD=∠AOG,故③符合题意,如图2,过点G作GH⊥AD交DA的延长线于点H,过点E作EQ⊥AD交DA的延长线于点Q,∴∠EAQ+∠AEQ=90°,∠EAQ+∠GAQ=90°,∴∠AEQ=∠GAQ,又∵AE=AG,∠EQA=∠AHG=90°,∴△AEQ≌△GAH(AAS)∴AQ=GH,∴AD×GH=AB×AQ,∴S△ADG=S△ABE,故④符合题意,故选:D.【题目点拨】本题主要考查正方形的性质和三角形全等的判定和性质的综合,添加辅助线,构造全等三角形,是解题的关键.4、B【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为且,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:根据科学计数法得:.故选:B.【题目点拨】本题主要考查科学计数法,熟记科学计数法的一般形式是且是关键,注意负指数幂的书写规则是由原数左边第一个不为零的数字开始数起.5、A【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【题目详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故选A.【题目点拨】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、D【解题分析】试题解析:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项不合题意;D、是轴对称图形,又是中心对称图形,故此选项符合题意;故选D.7、C【分析】首先将展开图折叠,即可得出与汉字“治”相对的面上的汉字.【题目详解】由题意,得与汉字“治”相对的面上的汉字是“依”,故答案为C.【题目点拨】此题主要考查对正方体展开图的认识,熟练掌握,即可解题.8、C【分析】根据反比例函数的性质即可得到答案.【题目详解】∵k=3>0,反比例函数的图形在第一象限或第三象限,∴在每个象限内,y随着x的增大而减小,∵点,且3<6,∴,故选:C.【题目点拨】此题考查反比例函数的性质,正确掌握函数图象的增减性是解题的关键.9、D【解题分析】试题分析:A.由直线与y轴的交点在y轴的负半轴上可知,<0,错误;B.由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.考点:1.二次函数的图象;2.一次函数的图象.10、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【题目详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【题目点拨】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.11、C【分析】过O作OC⊥PB于C,根据直角三角形的性质得到OC=3,根据直线与圆的位置关系即可得到结论.【题目详解】解:过O作OC⊥PB于C,∵∠APB=30°,OP=6,∴OC=OP=3<3,∴半径为3的圆与PB的位置关系是相交,故选:C.【题目点拨】本题考查直线与圆的位置关系,掌握含30°角的直角三角形的性质是本题的解题关键.12、B【分析】先根据等腰三角形的性质得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入计算可得.【题目详解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故选:B.【题目点拨】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt△ABD,再利用三角函数求解.二、填空题(每题4分,共24分)13、1【分析】根据概率公式列出方程,即可求出答案.【题目详解】解:由题意得,解得m=1,经检验m=1是原分式方程的根,故答案为1.【题目点拨】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.14、2.5【分析】连接AC,根据∠ABC=90°可知AC是⊙O的直径,故可得出∠D=90°,再由AD=4,CD=3可求出AC的长,进而得出结论.【题目详解】解:如图,连接AC,∵∠ABC=90°,
∴AC是⊙O的直径,
∴∠D=90°,
∵AD=4,CD=3,
∴AC=5,∴⊙O的半径=2.5,故答案为:2.5.【题目点拨】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【题目详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【题目点拨】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.16、【分析】先证明△ABC∽△ADE,再根据相似三角形的性质:相似三角形的对应高的比等于相似比求解即可.【题目详解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案为:(4,0).【题目点拨】本题考查了中心投影,相似三角形的判定和性质,准确识图,熟练掌握相似三角形的对应高的比等于相似比是解题的关键.17、(5,2)或(4,4).【分析】要求△ABC与△OAB相似,因为相似比不为1,由三边对应相等的两三角形全等,知△OAB的边AB不能与△ABC的边AB对应,则AB与AC对应或者AB与BC对应并且此时AC或者BC是斜边,分两种情况分析即可.【题目详解】解:根据题意得:OA=1,OB=2,AB=,∴当AB与AC对应时,有或者,∴AC=或AC=5,∵C在格点上,∴AC=(不合题意),则AC=5,如图:∴C点坐标为(4,4)同理当AB与BC对应时,可求得BC=或者BC=5,也是只有后者符合题意,如图:此时C点坐标为(5,2)∴C点坐标为(5,2)或(4,4).故答案为:(5,2)或(4,4).【题目点拨】本题结合坐标系,重点考查了相似三角形的判定的理解及运用.18、【题目详解】设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,∴k=-0.6,∴y=-0.6x+21.2.把y=6.2代入得,-0.6x+21.2=6.2,∴x=25,∴F(25,6.2).设抛物线解析式为:y=ax2+bx+1.2,把E(20,9.2),F(25,6.2)代入得,,解之得:,∴y=-0.04x2+1.2x+1.2,设向上平移0.4m,向左后退了hm,恰好把水喷到F处进行灭火由题意得y=-0.04(x+h)2+1.2(x+h)+1.2+0.4,把F(25,6.2)代入得,6.2=-0.04×(25+h)2+1.2(25+h)+1.2+0.4,整理得:h2+20h-10=0,解之得:,(舍去).∴向后退了m故答案是:【题目点拨】本题考查了二次函数和一次函数的实际应用,设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入求出直线解析式,从而求出点F的坐标.把E(20,9.2),F(25,6.2)代入y=ax2+bx+1.2求出二次函数解析式.设向左平移了hm,表示出平移后的解析式,把点F的坐标代入可求出k的值.三、解答题(共78分)19、点E离地面的高度为8.1米【分析】延长DA交水平虚线于F,过E作EH⊥BF于H,根据题意,在Rt△ABF中,求出AF,从而得到EF,结合Rt△EFH,求出EH即可求得结果.【题目详解】解:如图3所示,延长DA交水平虚线于F,过E作EH⊥BF于H,∵∠BAF=90°,∠ABF=37°,∴Rt△ABF中,AF=tan37°×AB≈0.75×8=6(米),∴EF=AF+AD+DE=8.5,∵∠EHF=90°=∠BAF,∠BFA=∠EFH,∴∠E=37°,∴Rt△EFH中,EH=cos37°×EF≈0.80×8.5=6.8(米),又∵底边AB离地面的距离为1.3米,∴点E离地面的高度为6.8+1.3=8.1(米),故答案为:8.1米.【题目点拨】本题考查了直角三角形中锐角三角函数值的应用,同角的余角相等,仰角的定义,掌握锐角三角函数值的应用是解题的关键.20、(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.【分析】(1)根据“总利润=每件的利润×销量”列出一元二次方程即可求出结论;(2)设公司日销售获得的利润为w元,根据“总利润=每件的利润×销量”即可求出w与x的函数关系式,然后利用二次函数求最值即可.【题目详解】(1)根据题意得,(﹣2x+800)(x﹣200)=15000,解得:x1=250,x2=350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)设公司日销售获得的利润为w元,根据题意得,w=y(x﹣200)=(﹣2x+800)(x﹣200)=﹣2x2+1200x﹣160000=﹣2(x﹣300)2+20000,∵﹣2<0,∴当x=300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元.【题目点拨】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键.21、见解析【分析】根据主视图,左视图的定义画出图形即可.【题目详解】如图,主视图,左视图如图所示.【题目点拨】本题考查三视图,解题的关键是理解三视图的定义.22、(1)∠B=40°;(2)AB=6.【分析】(1)连接OD,由在△ABC中,∠C=90°,BC是切线,易得AC∥OD
,即可求得∠CAD=∠ADO
,继而求得答案;
(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD
,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.【题目详解】解:(1)如解图①,连接OD,∵BC切⊙O于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【题目点拨】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.23、(1)证明见解析;(2);(3)是等腰直角三角形,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识产权新员工培训课件
- 春风十里才子归来
- 主播直播培训
- 二零二五年度建筑垃圾清运合同示范3篇
- 珠宝瓷器知识培训课件
- “双减”政策下语文作业的设计趋势
- 临床C1q 肾病病因、发病机制、关键诊断特征、病理三镜、鉴别诊断及病理图谱
- 儿科超声对小儿急腹症诊断要点和注意事项
- 四川省泸州市江阳区2024-2025学年九年级上学期1月期末考试英语试题(含答案)
- 湖南省长沙市2025年新高考适应性考试地理试题(含答案)
- 住宅设计效果图协议书
- 新版中国食物成分表
- 浙江省温州市温州中学2025届数学高二上期末综合测试试题含解析
- 2024河南郑州市金水区事业单位招聘45人历年高频难、易错点500题模拟试题附带答案详解
- 食物损失和浪费控制程序
- TCI 373-2024 中老年人免散瞳眼底疾病筛查规范
- 2024四川太阳能辐射量数据
- 石油钻采专用设备制造考核试卷
- 法人变更股权转让协议书(2024版)
- 研究生中期考核汇报模板幻灯片
- 培训机构与学校合作协议书范本
评论
0/150
提交评论