版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽阜阳鸿升中学九年级数学第一学期期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称2.如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条 B.4条C.5条 D.6条3.如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是()A.4 B.6 C.8 D.104.(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A、1个 B、2个C、3个 D、4个5.已知抛物线与轴没有交点,那么该抛物线的顶点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.某班七个兴趣小组人数分别为4,4,5,x,1,1,1.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.1 C.5 D.47.已知关于的二次函数的图象在轴上方,并且关于的分式方程有整数解,则同时满足两个条件的整数值个数有().A.2个 B.3个 C.4个 D.5个8.不等式组的整数解有()A.4个 B.3个 C.2个 D.1个9.关于x的一元二次方程x2+kx﹣2=0(k为实数)根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.不能确定10.二次函数图象的一部分如图所示,顶点坐标为,与轴的一个交点的坐标为(-3,0),给出以下结论:①;②;③若、为函数图象上的两点,则;④当时方程有实数根,则的取值范围是.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,中,,则__________.12.如图,点为等边三角形的外心,连接.①___________.②弧以为圆心,为半径,则图中阴影部分的面积等于__________.13.抛物线的对称轴是________.14.函数和在第一象限内的图象如图,点是的图象上一动点,轴于点,交的图象于点;轴于点,交的图象于点,则四边形的面积为______.15.如图,,如果,那么_________________.16.在一个不透明的袋子中装有个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球放回,混合均匀后再摸出一个球,两次都摸到红球的概率是___________.17.若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线Tn的函数表达式为_____.18.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中有点A(1,5),B(2,2),将线段AB绕P点逆时针旋转90°得到线段CD,A和C对应,B和D对应.(1)若P为AB中点,画出线段CD,保留作图痕迹;(2)若D(6,2),则P点的坐标为,C点坐标为.(3)若C为直线上的动点,则P点横、纵坐标之间的关系为.20.(6分)如图,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地上修建公园.其中要留出宽度相等的三条小路,且两条与平行,另一条与平行,其余部分建成花圃.(1)若花圃总面积为448平方米,求小路宽为多少米?(2)已知某园林公司修建小路的造价(元)和修建花圃的造价(元)与修建面积(平方米)之间的函数关系分别为和.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?21.(6分)已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?22.(8分)如图,在直角坐标系中,矩形的顶点、分别在轴和轴正半轴上,点的坐标是,点是边上一动点(不与点、点重合),连结、,过点作射线交的延长线于点,交边于点,且,令,.(1)当为何值时,?(2)求与的函数关系式,并写出的取值范围;(3)在点的运动过程中,是否存在,使的面积与的面积之和等于的面积.若存在,请求的值;若不存在,请说明理由.23.(8分)如图,对称轴为直线的抛物线与轴交于两点,与轴交于点连接其中点坐标.(1)求抛物线的解析式;(2)直线与抛物线交于点与轴交于点求的面积;(3)在直线下方抛物线上有一点过作轴交直线于点.四边形为平行四边形,求点的坐标.24.(8分)计算:2cos30°+(π﹣3.14)0﹣25.(10分)分别用定长为a的线段围成矩形和圆.(1)求围成矩形的面积的最大值;(用含a的式子表示)(2)哪种图形的面积更大?为什么?26.(10分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【题目详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【题目点拨】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.2、D【题目详解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6条线段为1.故选D.3、D【分析】延长BE交于点M,连接CM,AC,依据直径所对的圆周角是90度,及等弧对等弦,得到直角三角形BMC和等腰直角三角形BAC,依据等腰直角三角形三边关系,知道要求AB只要求直径BC,直径BC可以在直角三角形BMC中运用勾股定理求,只需要求出BM和CM,依据三个内角是直角的四边形是矩形,可以得到四边形EFCM是矩形,从而得到CM和EM的长度,再用BE+EM即得BM,此题得解.【题目详解】解:延长BE交于点M,连接CM,AC,∵BC为直径,∴,又∵由得:,∴四边形EFCM是矩形,∴MC=EF=2,EM=CF=6又∵BE=8,∴BM=BE+EM=8+6=14,∴,∵点A是以BC为直径的半圆的中点,∴AB=AC,又∵,∴,∴AB=10.故选:D.【题目点拨】本题考查了圆周角定理的推理——直径所对的圆周角是90度,矩形的判定与性质,勾股定理,解题的关键是构造两个直角三角形,将已知和待求用勾股定理建立等式.4、B【解题分析】圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B.5、D【分析】根据题目信息可知当y=0时,,此时,可以求出a的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限.【题目详解】解:∵抛物线与轴没有交点,∴时无实数根;即,,解得,,又∵的顶点的横坐标为:;纵坐标为:;故抛物线的顶点在第四象限.故答案为:D.【题目点拨】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x轴无交点得出时无实数根,再利用根的判别式求解a的取值范围.6、C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【题目详解】解:∵某班七个兴趣小组人数分别为4,4,3,x,1,1,2.已知这组数据的平均数是3,
∴x=3×2-4-4-3-1-1-2=3,
∴这一组数从小到大排列为:3,4,4,3,1,1,2,
∴这组数据的中位数是:3.
故选:C.【题目点拨】本题考查的是中位数,熟知中位数的定义是解答此题的关键.7、B【解题分析】关于的二次函数的图象在轴上方,确定出的范围,根据分式方程整数解,确定出的值,即可求解.【题目详解】关于的二次函数的图象在轴上方,则解得:分式方程去分母得:解得:当时,;当时,(舍去);当时,;当时,;同时满足两个条件的整数值个数有3个.故选:B.【题目点拨】考查分式方程的解,二次函数的图象与性质,熟练掌握分式方程以及二次函数的性质是解题的关键.8、B【分析】先解出不等式组的解集,然后再把所有符合条件的整数解列举出来即可.【题目详解】解:解得,解得,∴不等式组的解集为:,整数解有1、2、3共3个,故选:B.【题目点拨】本题考查了一元一次不等式组的的解法,先分别求出各不等式的解集,注意化系数为1时,如果两边同时除以一个负数,不等号的方向要改变;再求各个不等式解集的公共部分,必要时,可用数轴来求公共解集.9、A【分析】利用一元二次方程的根的判别式即可求【题目详解】由根的判别式得,△=b2-4ac=k2+8>0故有两个不相等的实数根故选A.【题目点拨】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0
时,方程无实数根,上述结论反过来也成立.10、D【分析】由二次函数的图象可知,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x交点的关系可判断④.【题目详解】解:∵抛物线开口向下,交y轴正半轴∴∵抛物线对称轴为x=-1,∴b=2a<0∴①正确;当x=-2时,位于y轴的正半轴故②正确;点的对称点为∵当时,抛物线为增函数,∴③正确;若当时方程有实数根,则需与x轴有交点则二次函数向下平移的距离即为t的取值范围,则的取值范围是,④正确.故选:D.【题目点拨】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.二、填空题(每小题3分,共24分)11、17【解题分析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案为17.12、120【分析】①连接OC利用等边三角形的性质可得出,可得出的度数②阴影部分的面积即求扇形AOC的面积,利用面积公式求解即可.【题目详解】解:①连接OC,∵O为三角形的外心,∴OA=OB=OC∴∴∴.②∵∴∴阴影部分的面积即求扇形AOC的面积∵∴阴影部分的面积为:.【题目点拨】本题考查的知识点有等边三角形外心的性质,全等三角形的判定及其性质以及扇形的面积公式,利用三角形外心的性质得出OA=OB=OC是解题的关键.13、【分析】根据二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=−计算.【题目详解】抛物线y=2x2+24x−7的对称轴是:x=−=−1,故答案为:x=−1.【题目点拨】本题考查的是二次函数的性质,掌握二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=−是解题的关键.14、3【解题分析】根据反比例函数系数k的几何意义可分别求得△OBD、△OAC、矩形PDOC的面积,据此可求出四边形PAOB的面积.【题目详解】解:如图,
∵A、B是反比函数上的点,
∴S△OBD=S△OAC=,∵P是反比例函数上的点,
∴S矩形PDOC=4,
∴S四边形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【题目点拨】本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.15、【分析】根据平行线分线段成比例定理解答即可.【题目详解】解:∵,∴,即,解得:.故答案为:.【题目点拨】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.16、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【题目详解】解:画树状图得:∵共有9种等可能的结果,两次都摸到红球的只有4种情况,
∴两次都摸到红球的概率是:.
故答案为.【题目点拨】此题考查的是用列表法或树状图法求概率的知识.正确的列出树状图是解决问题的关键.17、【分析】设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,由△A1B1A2是等边三角形,结合顶点都在直线y=x上,可以求出,A2(4,0),进而得到T1的表达式:,同理,依次类推即可得到结果.【题目详解】解:设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,如图所示:∵△A1B1A2是等边三角形,∴∠B1A1A2=60°,∵顶点都在直线y=x上,设,∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A2B1,∴A1C1=A1B1•cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),设T1的解析式为:,则,∴,∴T1:,同理,T2的解析式为:,T3的解析式为:,…则Tn的解析式为:,故答案为:.【题目点拨】本题考查了等边三角形的性质,直角三角形中锐角三角函数值的应用,直线表达式的应用,图形规律中类比归纳思想的应用,顶点式设二次函数解析式并求解,掌握二次函数解析式的求解是解题的关键.18、74【分析】利用加权平均数公式计算.【题目详解】甲的成绩=,故答案为:74.【题目点拨】此题考查加权平均数,正确理解各数所占的权重是解题的关键.三、解答题(共66分)19、(1)见解析;(2)(4,4),(3,1);(3).【分析】(1)根据题意作线段CD即可;(2)根据题意画出图形即可解决问题;(3)因为点C的运动轨迹是直线,所以点P的运动轨迹也是直线,找到当C坐标为(0,0)时,P'的坐标,利用待定系数法即可求出关系式.【题目详解】(1)如图所示,线段CD即为所求,(2)如图所示,P点坐标为(4,4),C点坐标为(3,1),故答案为:(4,4),(3,1).(3)如图所示,∵点C的运动轨迹是直线,∴点P的运动轨迹也是直线,当C点坐标为(3,1)时,P点坐标为(4,4),当C点坐标为(0,0)时,P'的坐标为(3,2),设直线PP'的解析式为,则有,解得,∴P点横、纵坐标之间的关系为,故答案为:.【题目点拨】本题考查网格作图和一次函数的解析式,熟练掌握旋转变换的特征是解题的关键.20、(1)小路的宽为2米;(2)小路的宽为2米时修建小路和花圃的总造价最低.【分析】(1)设小路的宽为米,根据面积公式列出方程并解方程即可;(2)设小路的宽为米,总造价为元,先分别表示出花圃的面积和小路的面积,然后根据已知函数关系,即可求出总造价为与小路宽的函数关系式,化为顶点式,利用二次函数的增减性求最值即可求出此时的小路的宽.【题目详解】解:(1)设小路的宽为米,则可列方程解得:或(舍去)答:小路的宽为2米.(2)设小路的宽为米,总造价为元,则花圃的面积为平方米,小路面积为=平方米所以整理得:∵,对称轴为x=20∴当时,随的增大而增大∴当时,取最小值答:小路的宽为2米时修建小路和花圃的总造价最低【题目点拨】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数增减性求最值是解决出的关键.21、(1)b=-4,c=5;(2)当x=2时,二次函数有最小值为1【分析】(1)利用待定系数法求解即可;(2)根据图象上点的坐标,可得出图象的对称轴及顶点坐标,即可得到答案.【题目详解】(1)把(0,5),(1,2)代入y=x2+bx+c得:,解得:,∴,;(2)由表格中数据可得:∵、时的函数值相等,都是2,∴此函数图象的对称轴为直线,∴当x=2时,二次函数有最小值为1.【题目点拨】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.22、(1)当时,;(2)();(3)存在,.【分析】(1)由题意可知,当OP⊥AP时,∽,∴,即,于是解得x值;(2)根据已知条件利用两角对应相等两个三角形相似,证明三角形OCM和三角形PCO相似,得出对应边成比例即可得出结论;(3)假设存在x符合题意.过作于点,交于点,由与面积之和等于的面积,∴.然后求出ED,EF的长,再根据三角形相似:∽,求出MP的长,进而由上题的关系式求出符合条件的x.【题目详解】解:(1)证明三角形OPC和三角形PAB相似是解决问题的关键,由题意知,,BC∥OA,∵,∴.∴.∴∽,∴,即,解得(不合题意,舍去).∴当时,;(2)由题意可知,∥,∴.∵(已知),∴.∵,∴∽,∴对应边成比例:,即.∴,因为点是边上一动点(不与点、点重合),且满足∽,所以的取值范围是.(3)假设存在符合题意.如图所示,过作于点,交于点,则.∵与面积之和等于的面积,∴.∴.∵∥,∴∽.∴.即,解得.由(2)得,所以.解得(不合题意舍去).∴在点的运动过程中存在x,,使与面积之和等于的面积,此时.【题目点拨】1.相似三角形的判定与性质;2.矩形性质.23、(1);(2);(3)【分析】(1)根据对称轴公式及点A坐标建立方程组求解即可;(2)根据直线表达式求出点E坐标,再联立直线与抛物线的表达式求交点C、D的坐标,利用坐标即可求出的面积;(3)根据点Q在抛物线上设出点Q坐标,再根据P、Q之间的关系表示出点P的坐标,然后利用平行四边形的性质得到BE=PQ,从而建立方程求解即可.【题目详解】解:(1)由题可得,解得,∴抛物线解析式为;(2)在中,令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年(2023-2025)中考历史真题分类汇编(全国)专题39 观点论述题综合题(原卷版)
- 2026年深圳市眼科医院公开招聘工作人员备考题库及参考答案详解一套
- 2026年永州市蓝山县塔峰镇公开招聘社区专职工作人员39人备考题库有答案详解
- 2026届内蒙古呼和浩特市回民中学生物高三上期末教学质量检测模拟试题含解析
- 安全生产作业培训课件
- 2025年城市排水管网改造与维护指南
- 2026年秦渡中心卫生院牛东分院招聘备考题库及答案详解参考
- 2025年旅游观光车驾驶与安全指南
- 初中物理教学中力学实验操作与实验报告撰写技巧研究教学研究课题报告
- 信息安全合规实施方法
- 零基础AI人工智能课件
- 2024广东职业技术学院教师招聘考试真题及答案
- 新疆地区2022-2024年中考满分作文22篇
- 2025年济宁市中考生物试题卷(含答案及解析)
- 柳钢除尘灰资源综合利用项目环境影响报告表
- 恩格斯:《路德维希费尔巴哈和德国古典哲学的终结》原文
- 外科院感知识培训计划课件
- 2023-2025年语文全国中考真题分类汇编 专题04 句子衔接与排序
- 喉癌解剖结构讲解
- 计算机思政说课课件
- 少儿c语言教学课件
评论
0/150
提交评论