版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省保定市雄县数学九年级第一学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若,则的值为()A. B. C. D.﹣2.若一次函数的图像经过第一、二、四象限,则下列不等式中总是成立的是()A. B. C. D.3.反比例函数的图像经过点,,则下列关系正确的是()A. B. C. D.不能确定4.下列事件中,是必然事件的是()A.明天一定有雾霾B.国家队射击运动员射击一次,成绩为10环C.13个人中至少有两个人生肖相同D.购买一张彩票,中奖5.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为()A. B. C. D.6.化简的结果是A.-9 B.-3 C.±9 D.±37.若x=5是方程的一个根,则m的值是()A.-5 B.5 C.10 D.-108.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是:A.5米 B.6米 C.6.5米 D.7米9.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是()A. B. C. D.10.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=28º,则∠P的度数是()A.50º B.58ºC.56º D.55º二、填空题(每小题3分,共24分)11.正六边形的中心角为_____;当它的半径为1时,边心距为_____.12.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.13.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.14.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.15.如图,四边形是半圆的内接四边形,是直径,.若,则的度数为______.16.如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=2∶3∶4,若EG=4,则AC=________.17.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是.18.已知函数,当时,函数值y随x的增大而增大.三、解答题(共66分)19.(10分)如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,点E在线段OB上,AE的延长线与BC相交于点F,OD2=OB·OE.(1)求证:四边形AFCD是平行四边形;(2)如果BC=BD,AE·AF=AD·BF,求证:△ABE∽△ACD.20.(6分)已知一元二次方程x2﹣3x+m=1.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根.21.(6分)如图,二次函数y=﹣x2+x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.22.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,建立平面直角坐标系后,的顶点均在格点上,点的坐标为.(1)画出关于轴对称的;写出顶点的坐标(,),(,).(2)画出将绕原点按顺时针旋转所得的;写出顶点的坐标(,),(,),(,).(3)与成中心对称图形吗?若成中心对称图形,写出对称中心的坐标.23.(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.24.(8分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.25.(10分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.26.(10分)(1)计算:(2119-)1-(cos61°)-2+-tan45°;(2)解方程:2x2-4x+1=1.
参考答案一、选择题(每小题3分,共30分)1、C【分析】将变形为﹣1,再代入计算即可求解.【题目详解】解:∵,∴=﹣1=﹣1=.故选:C.【题目点拨】考查了比例的性质,解题的关键是将变形为.2、C【分析】首先判断a、b的符号,再一一判断即可解决问题.【题目详解】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,故A错误;,故B错误;a2+b>0,故C正确,a+b不一定大于0,故D错误.故选:C.【题目点拨】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.3、B【分析】根据点的横坐标结合反比例函数图象上点的坐标特征即可求出y1、y2的值,比较后即可得出结论.【题目详解】解:∵反比例函数的图象经过点,,
∴y1=3,y2=,
∵3>,
∴.
故选:B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,根据点的横坐标利用反比例函数图象上点的坐标特征求出点的纵坐标是解题的关键.4、C【分析】必然事件是一定发生的事情,据此判断即可.【题目详解】A.明天有雾霾是随机事件,不符合题意;B.国家队射击运动员射击一次,成绩为10环是随机事件,不符合题意;C.总共12个生肖,13个人中至少有两个人生肖相同是必然事件,符合题意;D.购买一张彩票,中奖是随机事件,不符合题意;故选:C.【题目点拨】本题考查了必然事件与随机事件,必然事件是一定发生的的时间,随机事件是可能发生,也可能不发生的事件,熟记概念是解题的关键.5、C【分析】DE为△ABC的中位线,则DE∥BC,DE=BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【题目详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴,故选:C.【题目点拨】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.6、B【分析】根据二次根式的性质即可化简.【题目详解】=-3故选B.【题目点拨】此题主要考查二次根式的化简,解题的关键实数的性质.7、D【分析】先把x=5代入方程得到关于m的方程,然后解此方程即可.【题目详解】解:把x=5代入方程得到25-3×5+m=0,
解得m=-1.
故选:D.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8、A【分析】在,直接根据正弦的定义求解即可.【题目详解】如图:AB=13,作BC⊥AC,∵∴.故小车上升了5米,选A.【题目点拨】本题考查解直角三角形的应用-坡度坡角问题.解决本题的关键是将实际问题转化为数学问题,构造,在中解决问题.9、B【分析】根据概率公式即可得出答案.【题目详解】解:∵共设有20道试题,其中文明校园创建标准试题6道,∴他选中文明校园创建标准的概率是,故选:B.【题目点拨】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、C【分析】利用切线长定理可得切线的性质的PA=PB,,则,,再利用互余计算出,然后在根据三角形内角和计算出的度数.【题目详解】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,,∴在△ABP中∴故选:C.【题目点拨】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键.二、填空题(每小题3分,共24分)11、60°【分析】首先根据题意作出图形,然后可得△AOB是等边三角形,然后由三角函数的性质,求得OH的长即可得答案.【题目详解】如图所示:∵六边形ABCDE是正六边形,∴∠AOB==60°,∴△AOB是等边三角形,∴OA=OB=AB=1,作OM⊥AB于点M,∵OA=1,∠OAB=60°,∴OM=OA•sin60°=1×=.【题目点拨】本题考查正多边形和圆及解直角三角形,正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角;正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距;熟记特殊角的三角函数值及三角函数的定义是解题关键.12、或或1【题目详解】如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;③当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或1.13、【分析】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,根据相似三角形的性质得到,代入求值即可;【题目详解】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,∵,∴,∴,∴,即,解得;故答案是.【题目点拨】本题主要考查了相似三角形对应线段成比例和圆的切线性质,准确计算是解题的关键.14、【解题分析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.15、50【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【题目详解】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∵DC=CB∴∵AB是直径∴∴故答案为:50.【题目点拨】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键.16、12【解题分析】试题解析:根据平行线分线段成比例定理可得:故答案为17、24或.【解题分析】试题分析:由x2-16x+60=0,可解得x的值为6或10,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.考点:一元二次方程的解法;等腰三角形的性质;直角三角形的性质.勾股定理.18、x≤﹣1.【解题分析】试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析【分析】(1)由题意,得到,然后由AD∥BC,得到,则,即可得到AF//CD,即可得到结论;(2)先证明∠AED=∠BCD,得到∠AEB=∠ADC,然后证明得到,即可得到△ABE∽△ADC.【题目详解】证明:(1)∵OD2=OE·OB,∴.∵AD//BC,∴.∴.∴AF//CD.∴四边形AFCD是平行四边形.(2)∵AF//CD,∴∠AED=∠BDC,.∵BC=BD,∴BE=BF,∠BDC=∠BCD∴∠AED=∠BCD.∵∠AEB=180°∠AED,∠ADC=180°∠BCD,∴∠AEB=∠ADC.∵AE·AF=AD·BF,∴.∵四边形AFCD是平行四边形,∴AF=CD.∴.∴△ABE∽△ADC.【题目点拨】本题考查了相似三角形的判定和性质,平行线分线段成比例,平行四边形的判定和性质,以及平行线的性质,解题的关键是熟练掌握相似三角形的判定方法,正确找到证明三角形相似的条件.20、(1);(2)x1=x2=【分析】(1)根据一元二次方程根的判别式大于零,列出不等式,即可求解;(2)根据一元二次方程根的判别式等于零,列出方程,求出m的值,进而即可求解.【题目详解】(1)∵一元二次方程x2﹣3x+m=1有两个不相等的实数根,∴∆=b2﹣4ac=9﹣4m>1,∴m<;(2)∵一元二次方程x2﹣3x+m=1有两个相等的实数根,∴∆=b2﹣4ac=9﹣4m=1,∴m=,∴x2﹣3x+=1,∴x1=x2=.【题目点拨】本题主要考查一元二次方程根的判别式,掌握根的判别式与一元二次方程根的情况关系是解题的关键.21、(1)点A的坐标为(﹣1,0),点B的坐标为(4,0),点C的坐标为(0,3);(2)【分析】(1)根据题目中的函数解析式可以求得点A、B、C的坐标;(2)根据(1)中点A、点B、点C的坐标可以求得△ABC的面积.【题目详解】解:(1)∵二次函数y=x2+x+3=(x﹣4)(x+1),∴当x=0时,y=3,当y=0时,x1=4,x2=﹣1,即点A的坐标为(﹣1,0),点B的坐标为(4,0),点C的坐标为(0,3);(2)∵点A的坐标为(﹣1,0),点B的坐标为(4,0),点C的坐标为(0,3),∴AB=5,OC=3,∴△ABC的面积是:=,即△ABC的面积是.【题目点拨】本题考查的是二次函数与x轴的交点,分别令x、y为0,即可求出函数与坐标轴的交点,进而求解三角形的面积.22、(1)作图见解析,;(2)作图见解析,;(3)成中心对称,对称中心坐标是【分析】(1)根据关于轴对称的点的特征找到A,C的对应点,然后顺次连接即可,再根据关于轴对称的点横坐标互为相反数,纵坐标相同即可写出的坐标;(2)将绕原点O顺时针旋转90°得到三点的对应点,然后顺次连接即可,再根据直角坐标系即可得到的坐标;(3)利用成中心对称的概念:如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称判断即可,然后根据一组对应点相连,其中点就是对称中心即可得出答案.【题目详解】解:(1)如图,根据关于y轴对称的点的特点可知:;(2)如图,由图可知,;(3)根据中心对称图形的定义可知与成中心对称,对称中心为线段的中点,坐标是.【题目点拨】本题主要考查作轴对称图形、中心对称和作旋转图形,掌握关于y轴对称的点的特点和对称中心的求法是解题的关键.23、(1)详见解析;(2)1.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024幼儿园保育员幼儿教育理念与实践合同3篇
- 二零二五年房地产项目海外分销代理协议3篇
- 二零二五版国际贸易人才招聘与培训合同2篇
- 2025年教育设施智能化改造与装修服务合同范本3篇
- 2025年度环保设施运营管理合同范本及效益评估3篇
- 专业车辆运送协议模板(2024定制版)版B版
- 2024虚拟股投资退出机制合同范本3篇
- 二零二五年度驾校经营管理权定制化服务协议2篇
- 二零二五年度文化产业发展前景调研合同3篇
- 二零二五年度汽车售后服务品牌授权合同3篇
- 24年追觅在线测评28题及答案
- TGDNAS 043-2024 成人静脉中等长度导管置管技术
- 《陆上风电场工程概算定额》NBT 31010-2019
- GB/T 29490-2013企业知识产权管理规范
- GB/T 14436-1993工业产品保证文件总则
- 湖南省乡镇卫生院街道社区卫生服务中心地址医疗机构名单目录
- 《中外资产评估准则》课件第6章 英国评估准则
- FZ∕T 63006-2019 松紧带
- 罐区自动化系统总体方案(31页)ppt课件
- BIQS评分表模板
- 工程建设项目内外关系协调措施
评论
0/150
提交评论