




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西婺源县数学九年级第一学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A.64 B.16 C.24 D.322.下列各点在抛物线上的是()A. B. C. D.3.抛物线的图像与坐标轴的交点个数是()A.无交点 B.1个 C.2个 D.3个4.如图,△ABC内接于⊙O,OD⊥AB于D,OE⊥AC于E,连结DE.且DE=,则弦BC的长为()A. B.2 C.3 D.5.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A. B. C. D.6.已知圆锥的底面半径为5,母线长为13,则这个圆锥的全面积是()A. B. C. D.7.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为()A.﹣2 B.﹣1 C.1 D.28.如图,四点在⊙上,.则的度数为()A. B. C. D.9.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形 B.矩形 C.线段 D.梯形10.如图,、是的两条弦,若,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.关于的方程一个根是1,则它的另一个根为________.12.将一块三角板和半圆形量角器按图中方式叠放,点、在三角板上所对应的刻度分别是、,重叠阴影部分的量角器弧所对的扇形圆心角,若用该扇形围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为______.13.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.14.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=__.15.如果反比例函数的图象经过点,则该反比例函数的解析式为____________16.抛物线y=﹣x2+2x﹣5与y轴的交点坐标为_____.17.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.18.如图,直线:()与,轴分别交于,两点,以为边在直线的上方作正方形,反比例函数和的图象分别过点和点.若,则的值为______.三、解答题(共66分)19.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?20.(6分)如图,与是位似图形,点O是位似中心,,,求DE的长.21.(6分)如图,平面直角坐标系中,A、B、C坐标分别是(-4,0)、(-4,-1)、(-1,1).(1)将△ABC绕点O逆时针方向旋转90°后得△A1B1C1,画出△A1B1C1;(1)写出A1、B1、C1的坐标;(3)画出△ABC关于点O的中心对称图形△A1B1C1.22.(8分)一个不透明的口袋里装着分别标有数字,,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率;(2)从中任取一球,将球上的数字记为,然后把小球放回;再任取一球,将球上的数字记为,试用画树状图(或列表法)表示出点所有可能的结果,并求点在直线上的概率.23.(8分)某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.24.(8分)二次函数上部分点的横坐标x与纵坐标y的对应值如下表:x…0123…y…300m…(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m=;(4)在平面直角坐标系xOy中,画出此二次函数的图象.25.(10分)在等边中,点为上一点,连接,直线与分别相交于点,且.(1)如图(1),写出图中所有与相似的三角形,并选择其中的一对给予证明;(2)若直线向右平移到图(2)、图(3)的位置时,其他条件不变,(1)中的结论是否仍然成立?若成立请写出来(不证明),若不成立,请说明理由;(3)探究:如图(1),当满足什么条件时(其他条件不变),?请写出探究结果,并说明理由(说明:结论中不得含有未标识的字母).26.(10分)如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D与OA的位置关系,并证明你的结论.②通过上述证明,你还能得出哪些等量关系?
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】设AC=x,四边形ABCD面积为S,则BD=16-x,
则:S=AC•BD=x(16-x)=-(x-8)2+32,
当x=8时,S最大=32;
所以AC=BD=8时,四边形ABCD的面积最大,
故选D.【题目点拨】二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.2、A【分析】确定点是否在抛物线上,分别把x=0,3,-2,代入中计算出对应的函数值,再进行判断即可.【题目详解】解:当时,,当时,,当时,,当时,,所以点在抛物线上.故选:.3、B【分析】已知二次函数的解析式,令x=0,则y=1,故与y轴有一个交点,令y=0,则x无解,故与x轴无交点,题目求的是与坐标轴的交点个数,故得出答案.【题目详解】解:∵∴令x=0,则y=1,故与y轴有一个交点∵令y=0,则x无解∴与x轴无交点∴与坐标轴的交点个数为1个故选B.【题目点拨】本题主要考查二次函数与坐标轴的交点,熟练二次函数与x轴和y轴的交点的求法以及仔细审题是解决本题的关键.4、C【分析】由垂径定理可得AD=BD,AE=CE,由三角形中位线定理可求解.【题目详解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故选:C.【题目点拨】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识,灵活运用这些性质进行推理是本题的关键.5、A【解题分析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【题目详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y=12以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.【题目点拨】考查了现实中的二次函数问题,考查了学生的分析、解决实际问题的能力.6、B【分析】先根据圆锥侧面积公式:求出圆锥的侧面积,再加上底面积即得答案.【题目详解】解:圆锥的侧面积=,所以这个圆锥的全面积=.故选:B.【题目点拨】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整体代入的方法计算2a-4b的值即可.【题目详解】将x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故选:A.【题目点拨】本题考查了一元二次方程的解的定义.一元二次方程的解就是能够使方程左右两边相等的未知数的值.8、B【分析】连接BO,由可得,则,由圆周角定理,得,即可得到答案.【题目详解】解:如图,连接BO,则∵,∴,∴,∵,∴;故选:B.【题目点拨】本题考查了垂径定理,以及圆周角定理,解题的关键是正确作出辅助线,得到.9、D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【题目详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【题目点拨】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.10、C【分析】根据同弧所对的圆周角是圆心角的一半即可求出结论.【题目详解】解:∵∴∠BOC=2∠A=60°故选C.【题目点拨】此题考查的是圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.二、填空题(每小题3分,共24分)11、1【分析】利用一元二次方程根与系数的关系,即可得出答案.【题目详解】由一元二次方程根与系数的关系可知,∵关于的方程一个根是1,∴它的另一个根为1,故答案为:1.【题目点拨】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.12、1【分析】先利用弧长公式求出弧长,再利用弧长等于圆锥的底面周长求半径即可.【题目详解】根据题意有扇形的半径为6cm,圆心角∴设圆锥底面半径为r∴故答案为:1.【题目点拨】本题主要考查圆锥底面半径,掌握弧长公式是解题的关键.13、1.【解题分析】试题分析:解方程x2-13x+40=0,(x-5)(x-8)=0,∴x1=5,x2=8,∵3+4=7<8,∴x=5.∴周长为3+4+5=1.故答案为1.考点:1一元二次方程;2三角形.14、1或4或2.1.【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【题目详解】设DP=x,则CP=1-x,本题需要分两种情况情况进行讨论,①、当△PAD∽△PBC时,=∴,解得:x=2.1;②、当△APD∽△PBC时,=,即=,解得:x=1或x=4,综上所述DP=1或4或2.1【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.15、【分析】根据题意把点代入,反比例函数的解析式即可求出k值进而得出答案.【题目详解】解:设反比例函数的解析式为:,把点代入得,所以该反比例函数的解析式为:.故答案为:.【题目点拨】本题考查反比例函数的解析式,根据题意将点代入并求出k值是解题的关键.16、(0,﹣5)【分析】要求抛物线与y轴的交点,即令x=0,解方程.【题目详解】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,则抛物线y=﹣x2+2x﹣5与y轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【题目点拨】本题考查了抛物线与轴的交点坐标,正确掌握令或令是解题的关键.17、3【解题分析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.18、-1【分析】作CH⊥y轴于点H,证明△BAO≌△CBH,可得OA=BH=-3b,OB=CH=-b,可得点C的坐标为(-b,-2b),点D的坐标为(2b,-3b),代入反比例函数的解析式,即可得出k2的值.【题目详解】解:如图,作CH⊥y轴于点H,
∵四边形ABCD为正方形,
∴AB=BC,∠AOB=∠BHC=10°,∠ABC=10°
∴∠BAO=10°-∠OBA=∠CBH,
∴△BAO≌△CBH(AAS),
∴OA=BH,OB=CH,
∵直线l:(b<0)与x,y轴分别交于A,B两点,
∴A(3b,0),B(0,b),
∵b<0,
∴BH=-3b,CH=-b,
∴点C的坐标为(-b,-2b),
同理,点D的坐标为(2b,-3b),
∵k1=3,
∴(-b)×(-2b)=3,即2b2=3,
∴k2=2b×(-3b)=-6b2=-1.
故答案为:-1.【题目点拨】本题考查反比例函数图象上点的坐标的特征,直线与坐标轴的交点,正方形的性质,全等三角形的判定和性质.解题的关键是用b来表示出点C,D的坐标.三、解答题(共66分)19、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤1.【分析】(1)根据题目已知条件,可以判定销量与售价之间的关系式为一次函数,并可以进一步写出二者之间的关系式;然后根据单位利润等于单位售价减单位成本,以及销售利润等于单位利润乘销量,即可求出每天的销售利润与销售单价之间的关系式.(2)根据开口向下的抛物线在对称轴处取得最大值,即可计算出每天的销售利润及相应的销售单价.(3)根据开口向下的抛物线的图象的性质,满足要求的x的取值范围应该在﹣5(x﹣80)2+4500=4000的两根之间,即可确定满足题意的取值范围.【题目详解】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=1.∴当70≤x≤1时,每天的销售利润不低于4000元.【题目点拨】本题主要考查二次函数的应用.20、1【分析】已知△ABC与△DEF是位似图形,且OA=AD,则位似比是OB:OE=1:2,从而可得DE.【题目详解】解:∵△ABC与△DEF是位似图形,
∴△ABC∽△DEF,∵OA=AD,
∴位似比是OB:OE=1:2,
∵AB=5,∴DE=1.【题目点拨】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.21、(1)画图形见解析;(1),,;(3)画图形见解析【分析】(1)依据△ABC绕点O逆时针方向旋转90°后得到△A1B1C1,进行画图即可;(1)根据(1)所画的图形,即可写出坐标;(3)依据中心对称的性质,即可得到△ABC关于原点O对称的△A1B1C1;【题目详解】解:(1)画出图形,即为所求;(1)由图可知:,,;(3)画出图形,即为所求.【题目点拨】此题主要考查了旋转变换作图,以及坐标和图形,正确得出三角形对应点的位置是解题的关键.22、(1)所抽取的数字恰好为负数的概率是;(2)点(x,y)在直线y=﹣x﹣1上的概率是.【分析】(1)四个数字中负数有2个,根据概率公式即可得出答案;
(2)根据题意列表得出所有等可能的情况数,找出点(x,y)落在直线y=-x-1上的情况数,再根据概率公式即可得出答案.【题目详解】(1)∵共有4个数字,分别是﹣3,﹣1,0,2,其中是负数的有﹣3,﹣1,∴所抽取的数字恰好为负数的概率是=;(2)根据题意列表如下:﹣3﹣102﹣3(﹣3,﹣3)(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1(﹣3,﹣1)(﹣1,﹣1)(0,﹣1)(2,﹣1)0(﹣3,0)(﹣1,0)(0,0)(2,0)2(﹣3,2)(﹣1,2)(0,2)(2,2)所有等可能的情况有16种,其中点(x,y)在直线y=﹣x﹣1上的情况有4种,则点(x,y)在直线y=﹣x﹣1上的概率是=.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1);(2);【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【题目详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=.(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A),(C,B),(C,C),(C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=.【题目点拨】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.24、(1)对称轴x=1;(2)b=-2;(2)m=2;(4)见解析【分析】(1)根据图表直接写出此二次函数的对称轴即可;(2)图象经过点(1,-1),代入求b的值即可;(2)由题意将x=2代入解析式得到并直接写出表中的m值;(4)由题意采用描点法画出图像即可.【题目详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数的图象经过点(1,-1),∴.(2)将x=2代入解析式得m=2.(4)如图.【题目点拨】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键.25、(1)△BPF∽△EBF,△BPF∽△BCD;(2)均成立,分别为△BPF∽△EBF,△BPF∽△BCD,(3)当BD平分∠ABC时,PF=PE.【分析】(1)由两角对应相等的三角形是相似三角形找出△BPF∽△EBF,△BPF∽△BCD,这两组三角形都可由一个公共角和一组6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告类长期合同合同范本
- 资源分红股份合同范本
- 社交电商的流量获取与转化策略
- 装修中标合同范本
- 社区环保活动中的生态教育创新与实践
- 电子商务的跨境合作与国际化发展策略
- 现代生活节奏下的胃肠疾病预防
- 科学运动对职业运动员的重要性
- 2025浙江省二轻集团秋季校园招聘笔试参考题库附带答案详解
- 包子老店转让合同范本
- 《大学生安全教育》课件 项目四 军事安全
- 10KV电力配电工程施工方案
- 智能感知工程基础知识单选题100道及答案解析
- 肌肉注射药物不良反应及预防措施研究
- 人教版数学六年级上册第一单元测试卷
- 大型养路机械司机(打磨车)高级工技能鉴定考试题库(含答案)
- 车辆使用不过户免责协议书范文范本
- 蟾蜍毒抗病毒药物筛选
- 自建房-预算表
- DB11T 2033-2022 餐厨垃圾源头减量操作要求
- 合约部年终工作总结
评论
0/150
提交评论