版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
v1.0可编写可改正数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;2)当t=5时,求线段MN的长度;3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;2)若AC=8,求x的值;3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的地点.2)若A、B两点从(1)中的地点同时向数轴负方向运动,几秒后原点恰巧处在两个动点正中间4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.1)当点P运动到B点时,求出t的值;2)当t为什么值时,P、Q两点相遇,并求出此时P点对应的数1第1页(共17页)v1.0可编写可改正(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t5.已知a,b知足(a+2)2+|b﹣1|=0,请回答以下问题:1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:9,请问经过多少秒甲追上乙6.在数轴上有A、B两动点,点A初步地点表示数为﹣3,点B初步地点表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度(2)若点A、点B同时沿数轴向左运动,能否有一个时刻,表示数﹣3的点是线段AB的中点假如有,求出运动时间;假如没有,说明原因.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.1)求线段AB的长;2)直接用含t的式子分别表示数轴上的点P,Q对应的数;2第2页(共17页)v1.0可编写可改正(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.1)写出数轴上点A、点C表示的数;2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.1)数轴上能否存在点P,使P到点A、点B的之和为5若存在,恳求出x的值;若不存在,说明原因;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及地点记录以下.(1)依据题意,填写以下表格;时间(s)057x3第3页(共17页)v1.0可编写可改正A点地点19﹣1B点地点17272)A、B两点能否相遇假如相遇,求相遇时的时刻及在数轴上的地点;假如不可以相遇,请说明原因;(3)A、B两点能否相距18个单位长度假如能,求相距18个单位长度的时刻;如不可以,请说明原因.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为秒.(1)AB=.(2)当点P在线段BQ上时(如图2):BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.4第4页(共17页)v1.0可编写可改正数轴上动点问题参照答案与试题分析1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.1)线段AC的长为14个单位长度;点M表示的数为﹣3;2)当t=5时,求线段MN的长度;3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).【分析】(1)依据两点间的距离公式可得AC=6﹣(﹣8),依据中点坐标公式可得M点表示的数为﹣8+[2﹣(﹣8)];(2)当t=5时,可得P表示的数,再依据中点坐标公式可得N点表示的数,再依据两点间的距离公式可得线段MN的长度;3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左边时,利用中点的定义和线段的和差求出MN的长即可.【解答】解:(1)线段AC的长为AC=6﹣(﹣8)=14个单位长度;点M表示的数为﹣8+[2﹣(﹣8)]=﹣3;2)当t=5时,点P表示的数为6﹣5×1=1,点N表示的数为2﹣[2﹣1]=,线段MN的长度为﹣(﹣3)=;(3)①当点P在点A、B两点之间运动时,点P表示的数为6﹣t,点N表示的数为2+[(6﹣t)﹣2]=4﹣t,5第5页(共17页)v1.0可编写可改正线段MN的长度为4﹣t﹣(﹣3)=7﹣t;②当点P运动到点B的左边时,点P表示的数为6﹣t,点N表示的数为2﹣[2﹣(6﹣t)]=4﹣t,线段MN的长度为|4﹣t﹣(﹣3)|=|7﹣t|.故答案为:14,﹣3.【讨论】本题察看了数轴与两点间的距离的应用,用到的知识点是数轴上两点之间的距离,重点是依据题意画出图形,注意分两种状况进行讨论.2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.1)线段BC的长为10,线段BC的中点D所表示的数是﹣1;2)若AC=8,求x的值;3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,P,Q分别从点B,C同时出发,在数轴上运动,更多好题请进入Q群:9,则经过多少时间后P,Q两点相距4个单位【分析】(1)联合数轴即可得出线段AB的长度和线段BC的中点D表示的数;(2)分两种状况讨论,①点A在点C左边,②点A在点C右边,挨次求解即可;(3)分两种状况商讨答案:①当点P,Q分别从点B,C同时出发相向行驶时,②①当点P,Q分别从点B,C同时出发追击行驶时.【解答】解:(1)如图:线段BC的长为:4﹣(﹣6)=10,线段BC的中点D所表示的数是=﹣1;2)①当点A在点C左边,此时4﹣x=8,解得:x=﹣4;②点A在点C右边,此时x﹣4=8,解得:x=12,6第6页(共17页)v1.0可编写可改正综上可得x=﹣4或12.如图:3)设经过t秒后P,Q两点相距4个单位,①当点P,Q分别从点B,C同时出发相向行驶时,t+2t=10﹣4,或t+2t=10+4,解得,t=2或t=;②当点P,Q分别从点B,C同时出发向左的方向行驶时,2t+4=t+10或2t﹣4=t+10,解得t=6或t=14;综上所知当点P,Q分别从点B,C同时出发,在数轴上运动,则经过2、、6、14秒后P,Q两点相距4个单位.【讨论】本题主要察看了一元一次方程的应用,重点是正确理解题意,找出题目中的等量关系,列出方程;注意分类讨论思想的浸透.3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的地点.2)若A、B两点从(1)中的地点同时向数轴负方向运动,几秒后原点恰巧处在两个动点正中间7第7页(共17页)v1.0可编写可改正【分析】(1)设动点A的速度是x单位长度/秒,那么动点B的速度是4x单位长度/秒,然后依据3秒后,两点相距12个单位长度即可列出方程解决问题;(2)设y秒时,原点恰巧处在两个动点的正中间,那么A运动的长度为y,B运动的长度为3y,此后依据(1)的结果和已知条件即可列出方程解题.【解答】解:(1)设动点A的速度是x单位长度/秒,依据题意得:3(x+4x)=15解得:x=1,4x=4.答:动点A的速度是1单位长度/秒,动点B的速度是4单位长度/秒;标出A,B点如图:(2)设y秒时,原点恰巧处在两个动点的正中间,依据题意得:3+y=12﹣4y解得:y=,答:秒时,原点恰巧处在两个动点的正中间.【讨论】本题察看了一元一次方程的应用,解题重点是要读懂题目的意思,依据题目给出的条件,找出适合的等量关系,列出方程,再求解.4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.1)当点P运动到B点时,求出t的值;更多好题请进入Q群:92)当t为什么值时,P、Q两点相遇,并求出此时P点对应的数(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t【分析】(1)依据数轴上两点间的距离等于两点所表示的数的差的绝对值求出AB,此后根据时间=行程÷速度计算即可得解;8第8页(共17页)v1.0可编写可改正(2)依据相遇问题列方程求出t,再求解即可;(3)分相遇前和相遇后相距10个单位两种状况讨论求解.【解答】解:(1)∵A、B两点在数轴上分别表示﹣10和20,AB=|20﹣(﹣10)|=30,点P运动到B点时,10t=30,解得t=3;2)P、Q两点相遇,则10t+5t=30,解得t=2,此时,AP=10×2=20,P对应的数是20﹣10=10;3)若相遇前相距10个单位,则10t+5t=30﹣10,解得t=,若相遇后相距10个单位,则10t+5t=30+10,解得t=,综上所述,若P、Q相距10个单位,则运动时间t为秒或秒.【讨论】本题察看了数轴,主要利用了数轴上两点间的距离的求解,相遇问题的等量关系,难点在于(3)要分状况讨论.5.已知a,b知足(a+2)2+|b﹣1|=0,请回答以下问题:(1)a=﹣2,b=1;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙【分析】(1)依据非负数的性质求得a、b的值;9第9页(共17页)v1.0可编写可改正(2)依据(1)中的结果,在所给的数轴上标出点A,点B;(3)设经过x秒甲追上乙,则依据行程=速度×时间和它们的运动行程相差3列出方程并解答.【解答】解:(1)∵(a+2)2+|b﹣1|=0,∴(a+2)2=0,|b﹣1|=0,解得a=﹣2,b=1.故答案是:﹣2;1;2)点A、B分别表示﹣2、1,在数轴上表示为:;3)设经过x秒甲追上乙,则2x=x+3,解得x=3.答:经过3秒甲追上乙.【讨论】本题察看了一元一次方程的应用,数轴,非负数的性质等知识点.依据非负数的性质求得点A、B所表示的数是解题的重点.6.在数轴上有A、B两动点,点A初步地点表示数为﹣3,点B初步地点表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度(2)若点A、点B同时沿数轴向左运动,能否有一个时刻,表示数﹣3的点是线段AB的中点假如有,求出运动时间;假如没有,说明原因.【分析】(1)A、B之间相距15个单位长度,设x秒,后,点B与点A相距6个单位长度,依据题意,得2x﹣x=15﹣6,由此解答即可;2)设运动y秒时,数﹣3的点是线段AB的中点,依据题意,得15﹣2y=y,由此解答即可.【解答】解:(1)设x秒后,点B与点A相距6个单位长度,依据题意,得2x﹣x=15﹣6,2x﹣x=15+610第10页(共17页)v1.0可编写可改正解得x=9.或21答:9或21秒后,点B与点A相距6单位长度;(2)设运动y秒时,数﹣3的点是线段AB的中点,依据题意,得15﹣2y=y,解得y=5.答:运动5秒时,数﹣3的点是线段AB的中点.【讨论】本题察看了一元一次方程的应用,解题重点是要读懂题目的意思,依据题目给出的条件,找出适合的等量关系,列出方程,再求解.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H【分析】(1)先计算出线段OB,则可获得出点B表示的数;利用速度公式获得PA=5t,易得P点表示的数为8﹣5t;(2)点P比点H要多运动14个单位,利用行程相差14列方程得5t=14+3t,此后解方程即可.【解答】解:(1)∵OA=8,AB=14,OB=6,∴点B表示的数为﹣6,PA=5t,∴P点表示的数为8﹣5t,故答案为﹣6,8﹣5t;2)依据题意得5t=14+3t,解得t=7.11第11页(共17页)v1.0可编写可改正答:点P运动7秒时追上点H.【讨论】本题察看了一元二次方程的应用:利用方程解决实诘问题的基本思路以下:第一审题找出题中的未知量和全部的已知量,直接设要求的未知量或间接设一重点的未知量为x,此后用含x的式子表示有关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.1)求线段AB的长;2)直接用含t的式子分别表示数轴上的点P,Q对应的数;3)当PQ=AB时,求t的值.【分析】(1)依据数轴上两点间距离公式可得;(2)向右运动的点P表示的数在﹣10的基础上加上其运动行程,向左运动的点Q在5的基础上减去其运动的行程即可;(3)依据两点间的距离及PQ=AB,分P、Q相遇前和P、Q相遇后列方程求解可得.【解答】解:(1)线段AB的长为5﹣(﹣10)=15;2)点P表示的数为:﹣10+3t,点Q表示的数为:5﹣2t;3)依据题意,①点P、点Q相遇前,得:5﹣2t﹣(﹣10+3t)=5,解得:t=2;②点P、点Q相遇后,得:﹣10+3t﹣(5﹣2t)=5,解得:t=4;综上,t的值为2或4.12第12页(共17页)v1.0可编写可改正【讨论】本题主要察看两点间的距离及一元一次方程的实质应用能力,依据PQ=AB分状况表示出PQ的长是解题的重点.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数﹣4;当t=3时,OP=18.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P【分析】(1)利用两点之间的距离计算方法求得点B的坐标即可,利用点的挪动规律得出OP即可;2)求得OB的长度,利用R,P行驶的行程差为OB的长度列出方程解答即可.【解答】解:(1)数轴上点B所表示的数6﹣10=﹣4;当t=3时,OP=3t=18;2)由题意得:8t﹣6t=4解得:t=2答:若点P,R同时出发,点R运动2秒时追上点P.【讨论】本题察看一元一次方程的实质运用,联合数轴,利用行程中的追击问题的数目关系解决问题.10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.1)写出数轴上点A、点C表示的数;2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系【分析】(1)由数轴的定义联合线段的长度即可得出A、C点所表示的数;13第13页(共17页)v1.0可编写可改正2)设运动x秒后,这两个动点到原点O的距离存在2倍关系,分两种状况考虑,依据点的运动联合数目关系列出对于x的含绝对值符号的一元一次方程,经过解方程即可得出结论.【解答】解:(1)∵0A=6,且点A在原点O的左边,∴点A表示的数为﹣6;∵5AO=3CO,∴CO=5×6÷3=10.又∵点C在原点O的右边,∴点C表示的数为10.(2)设运动x秒后,这两个动点到原点O的距离存在2倍关系,①当OP=2OQ时,有|﹣6+x|=2×|10﹣4x|,解得:x1=2,x2=;②当2OP=OQ时,有2×|﹣6+x|=|10﹣4x|,解得:x3=,x4=﹣1(舍去).综上可知:运动2、和秒后,这两个动点到原点O的距离存在2倍关系.【讨论】本题察看了一元一次方程的应用以及数轴的定义,解题的重点是:(1)利用数轴的有关知识找出点代表的数;(2)列出对于时间x的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,依据点的运动联合线段间的数目关系列出方程是关键.11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.1)数轴上能否存在点P,使P到点A、点B的之和为5若存在,恳求出x的值;若不存在,说明原因;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等14第14页(共17页)v1.0可编写可改正【分析】(1)本题分两种状况:①当P在A的左边,②当P在A的右边分别求出即可;2)利用各点的速度联合点P到点A、点B的距离相等得出等式从而求出即可.【解答】解:(1)当P在A点左边时:3﹣x+(﹣1﹣x)=5,解得:x=﹣;P在B右边时,x﹣3+x﹣(﹣1)=5,解得:x=;P在A、B之间时,x不存在;(2)①设它们同时出发a分钟时点P到点A、点B的距离相等,此时A,B不重合,由题意得:a﹣(﹣5a﹣1)=(3﹣20a)﹣(﹣a),解得:a=.②当A,B重合时,20a=5a+4,解得:a=,答:它们同时出发分钟或分钟时点P到点A、点B的距离相等.【讨论】本题主要察看了一元一次方程的应用以及数轴上点的坐标与距离表示方法等知识,利用分类讨论得出是解题重点.12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及地点记录以下.(1)依据题意,填写以下表格;时间(s)057xA点地点19﹣1﹣9﹣4x+19B点地点﹣817275x﹣815第15页(共17页)v1.0可编写可改正2)A、B两点能否相遇假如相遇,求相遇时的时刻及在数轴上的地点;假如不可以相遇,请说明原因;(3)A、B两点能否相距18个单位长度假如能,求相距18个单位长度的时刻;如不可以,请说明原因.【分析】(1)依据两点之间的距离,从而可填写表格;2)依据相遇的相等关系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024抵押借贷合同范文
- 2024咨询服务合同范本标准范文
- 广东省珠海市七年级上学期语文期中试卷7套【附答案】
- 2024药品代理合同范本
- 单位团购房产转让合同范本
- 企业财产出售协议样式
- 2024年农村房屋转让协议范本
- 七年级地理上册5.1《世界的人口》教案粤教版
- 2024版标准家庭装修协议
- 建筑外墙保温工程施工合同
- 《狙击手》和《新神榜杨戬》电影赏析
- 枪库应急处置预案
- 老年患者术后谵妄的护理干预
- 《凸透镜成像的规律》课件
- 仓库管理中的客户服务和沟通技巧
- 规划选址及用地预审
- 土砂石料厂项目融资计划书
- 2024年给药错误护理不良事件分析持续改进
- 邮政营销策划方案
- 国际贸易法与跨境业务合规的风险管理与应对策略
- 麻醉科临床诊疗指南2020版
评论
0/150
提交评论