版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省凤凰皇仓中学数学九年级第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,Rt△ABC中,∠B=90°,AB=3,BC=2,则cosA=()A. B. C. D.2.抛物线的对称轴是直线()A.x=-2 B.x=-1 C.x=2 D.x=13.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或04.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5 B.﹣1 C.2﹣ D.5.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=23176.如图所示的几何体,它的俯视图是()A. B.C. D.7.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为()A.110° B.125° C.130° D.140°8.在一个不透明的袋中装有个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在左右,则袋中红球大约有()A.个 B.个 C.个 D.个9.关于的一元一次方程的解为,则的值为()A.5 B.4 C.3 D.210.关于的分式方程的解为非负整数,且一次函数的图象不经过第三象限,则满足条件的所有整数的和为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知是方程的两个实数根,则的值是____.12.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.13.如图,平行四边形中,,如果,则___________.14.在中,,,,圆在内自由移动.若的半径为1,则圆心在内所能到达的区域的面积为______.15.如图,直线y=-x+b与双曲线分别相交于点A,B,C,D,已知点A的坐标为(-1,4),且AB:CD=5:2,则m=_________.16.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为_____.17.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为__________.18.若能分解成两个一次因式的积,则整数k=_________.三、解答题(共66分)19.(10分)如图,四边形ABCD内接于圆,AD、BC的延长线交于点E,F是BD延长线上一点,DE平分∠CDF.求证:AB=AC.20.(6分)如图,矩形ABCD中,AB=3,BC=5,CD上一点E,连接AE,将△ADE绕点A旋转90°得△AFG,连接EG、DF.(1)画出图形;(2)若EG、DF交于BC边上同一点H,且△GFH是等腰三角形,试计算CE长.21.(6分)2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道.根据市场调查,在文旦上市销售的30天中,其销售价格(元公斤)与第天之间满足函数(其中为正整数);销售量(公斤)与第天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量与第天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润的最大值及相应的的值.22.(8分)综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,,,.你能求出的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将绕点逆时针旋转,得到,连接,求出的度数.思路二:将绕点顺时针旋转,得到,连接,求出的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点是正方形外一点,,,,求的度数.拓展应用(3)如图3,在边长为的等边三角形内有一点,,,则的面积是______.23.(8分)如图,已知一次函数y1=ax+b的图象与x轴、y轴分别交于点D、C,与反比例函数y2=的图象交于A、B两点,且点A的坐标是(1,3)、点B的坐标是(3,m).(1)求一次函数与反比例函数的解析式;(2)求C、D两点的坐标,并求△AOB的面积;(3)根据图象直接写出:当x在什么取值范围时,y1>y2?24.(8分)如图,⊙O是△ABC的外接圆,AB是直径,OD⊥AC,垂足为D点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PB,PC,且满足∠PCA=∠ABC(1)求证:PA=PC;(2)求证:PA是⊙O的切线;(3)若BC=8,,求DE的长.25.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.(1)求证:DE与⊙O相切;(2)若CD=BF,AE=3,求DF的长.26.(10分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据勾股定理求出AC,根据余弦的定义计算得到答案.【题目详解】由勾股定理得,AC===,则cosA===,故选:D.【题目点拨】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.2、B【解题分析】令解得x=-1,故选B.3、B【解题分析】设方程的两根为x1,x2,
根据题意得x1+x2=1,
所以a2-2a=1,解得a=1或a=2,
当a=2时,方程化为x2+1=1,△=-4<1,故a=2舍去,
所以a的值为1.
故选B.4、C【分析】先计算出∠PBC+∠PCB=45°,则∠BPC=135°,利用圆周角定理可判断点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,利用圆周角定理计算出∠BOC=90°,从而得到△OBC为等腰直角三角形,四边形ABOC为正方形,所以OA=BC=2,OB=,根据三角形三边关系得到AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),于是得到AP的最小值.【题目详解】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【题目点拨】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【题目详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x)2=23170.故选:C.【题目点拨】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.6、D【分析】根据俯视图的确定方法,找到从上面看所得到的图形即是所求图形.【题目详解】从几何体上面看,有三列,第一列2个,第二列1个位于第2层,第三列1个位于第2层.故选:D.【题目点拨】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.7、B【解题分析】解:∵点O为△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I为△ABC的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故选B.8、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【题目详解】设袋中有红球x个,由题意得解得x=10,故选:A.【题目点拨】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.9、D【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【题目详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【题目点拨】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.10、A【分析】解分式方程可得且,再根据一次函数的图象不经过第三象限,可得,结合可得,且,再根据是整数和是非负整数求出的所有值,即可求解.【题目详解】经检验,不是方程的解∴∵分式方程的解为非负整数∴解得且∵一次函数的图象不经过第三象限∴解得∴,且∵是整数∴∵是非负整数故答案为:A.【题目点拨】本题考查了分式方程和一次函数的问题,掌握解分式方程和解不等式组的方法是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据一元二次方程根与系数的关系可得出,,再代入中计算即可.【题目详解】解:∵是方程的两个实数根,∴,,∴,故答案为:1.【题目点拨】本题考查了一元二次方程根与系数的关系,解题的关键是熟知:若是一元二次方程的两个根,则,.12、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【题目详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【题目点拨】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键13、【分析】由平行四边形的性质可知△AEF∽△CDF,再利用条件可求得相似比,利用面积比等于相似比的平方可求得△CDF的面积.【题目详解】∵四边形ABCD为平行四边形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案为:.【题目点拨】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比、面积比等于相似比的平方是解题的关键.14、24【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB的长,延长BE交AC于H点,作HM⊥AB于M,根据圆的性质可知BH平分∠ABC,故CH=HM,设CH=x=HM,根据Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K点,利用△BEK∽△BHC,求出BK的长,即可求出EF的长,再根据△EFG∽△BCA求出FG,即可求出△EFG的面积.【题目详解】如图,由题意点O所能到达的区域是△EFG,连接BE,延长BE交AC于H点,作HM⊥AB于M,EK⊥BC于K,作FJ⊥BC于J.∵,,,∴AB=根据圆的性质可知BH平分∠ABC∴故CH=HM,设CH=x=HM,则AH=12-x,BM=BC=9,∴AM=15-9=6在Rt△AMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5∵EK∥AC,∴△BEK∽△BHC,∴,即∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG∥AB,EF∥AC,FG∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,故,即解得FG=8∴圆心在内所能到达的区域的面积为FG×EF=×8×6=24,故答案为24.【题目点拨】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.15、【解题分析】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.根据反比例函数y和直线AB组成的图形关于直线y=x对称,求出E、F、C、D的坐标即可.【题目详解】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.∵反比例函数y和直线AB组成的图形关于直线y=x对称,A(﹣1,4),∴B(4,﹣1),∴直线AB的解析式为y=﹣x+3,∴E(0,3),F(3,0),∴AB=5,EF=3.∵AB:CD=5:2,∴CD=2,∴CE=DF.设C(x,-x+3),∴CE=,解得:x=(负数舍去),∴x=,-x+3=,∴C(),∴m==.故答案为:.【题目点拨】本题考查了反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用轴对称的性质解决问题,属于中考常考题型.16、πa【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长=,那么勒洛三角形的周长为【题目详解】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长=,∴勒洛三角形的周长为故答案为πa.【题目点拨】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.17、【分析】同圆或等圆中,两弦相等,所对的优弧或劣弧也对应相等,据此求解即可.【题目详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∴===,∴的长等于⊙O周长的四分之一,∵⊙O的半径为6,∴⊙O的周长==,∴的长等于,故答案为:.【题目点拨】本题主要考查了圆中弧与弦之间的关系,熟练掌握相关概念是解题关键.18、【分析】根据题意设多项式可以分解为:(x+ay+c)(2x+by+d),则2c+d=k,根据cd=6,求出所有符合条件的c、d的值,然后再代入ad+bc=0求出a、b的值,与2a+b=1联立求出a、b的值,a、b是整数则符合,否则不符合,最后把符合条件的值代入k进行计算即可.【题目详解】解:设能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6时,ad+bc=6a+b=0,与2a+b=1联立求解得,或c=6,d=1时,ad+bc=a+6b=0,与2a+b=1联立求解得,②c=2,d=3时,ad+bc=3a+2b=0,与2a+b=1联立求解得,或c=3,d=2时,ad+bc=2a+3b=0,与2a+b=1联立求解得,③c=-2,d=-3时,ad+bc=-3a-2b=0,与2a+b=1联立求解得,或c=-3,d=-2,ad+bc=-2a-3b=0,与2a+b=1联立求解得,④c=-1,d=-6时,ad+bc=-6a-b=0,与2a+b=1联立求解得,或c=-6,d=-1时,ad+bc=-a-6b=0,与2a+b=1联立求解得,∴c=2,d=3时,c=-2,d=-3时,符合,∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,∴整数k的值是1,-1.故答案为:.【题目点拨】本题考查因式分解的意义,设成两个多项式的积的形式是解题的关键,要注意6的所有分解结果,还需要用a、b进行验证,注意不要漏解.三、解答题(共66分)19、见解析【解题分析】试题分析:先根据角平分线的性质得出∠CDE=∠EDF,再由对顶角相等得出∠EDF=∠ADB,∠CDE=∠ADB.根据圆内接四边形的性质得出∠CDE=∠ABC,∠ADB=∠ACB,进而可得出结论.证明:∵DE平分∠CDF,∴∠CDE=∠EDF.∵∠EDF=∠ADB,∴∠CDE=∠ADB.∵∠CDE=∠ABC,∠ADB=∠ACB,∴∠ABC=∠ACB,∴AB=AC.考点:圆周角定理.20、(1)见解析;(2)CE=3-【分析】(1)根据题意作图即可;(2)根据旋转的性质得到DE=FG,△ADF、△BHF是等腰直角三角形,故求出FH=,再根据等腰三角形的性质得到GF=FH==DE,故可求出CE的长.【题目详解】解:(1)如图所示:(2)由旋转得,AD=AF=5,DE=GF∵∠BAD=90°∴△ADF为等腰直角三角形,∴A、B、F在同一直线上∴BF=2=BH∴△BHF为等腰直角三角形,∴HF==,∵△GFH是等腰三角形且∠GFH=90°+45°=135°∴GF=FH==DE∵CD=AB=3∴CE=CD-DE=3-.【题目点拨】此题主要考查矩形及旋转的性质,解题的关键是熟知等腰三角形的判定与性质.21、(1);(2);(3)101.2,1.【分析】分两段,根据题意,用待定系数法求解即可;先用含m,n的式子表示出y来,再代入即可;分别对(2)中的函数化为顶点式,再依次求出各种情况下的最大值,最后值最大的即为所求.【题目详解】(1)当时,设,由图知可知,解得∴同理得,当时,∴销售量与第天之间的函数关系式:(2)∵∴整理得,(3)当时,∵的对称轴∴此时,在对称轴的右侧随的增大而增大∴时,取最大值,则当时∵的对称轴是∴在时,取得最大值,此时当时∵的对称轴为∴此时,在对称轴的左侧随的增大而减小∴时,取最大值,的最大值是综上,文旦销售第1天时,日销售利润最大,最大值是101.2【题目点拨】本题考查了一次函数和二次函数的实际应用,注意分情况进行讨论.22、(1)∠APB=135°,(2)∠APB=45°;(3).【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;
思路二、同思路一的方法即可得出结论;(2)将绕点逆时针旋转,得到,连接,然后同(1)的思路一的方法即可得出结论;(3)可先将△APB绕点A按逆时针方向旋转60°,得到△AP'C,根据旋转性质,角的计算可得到△APP'是等边三角形,再根据勾股定理,得到AP的长,最后根据三角形面积得到所求.【题目详解】解:(1)思路一,如图1,将绕点逆时针旋转,得到,连接,则≌,,,,∴,根据勾股定理得,,∵,∴.又∵,∴,∴是直角三角形,且,∴;思路二、同思路一的方法.(2)如图2,将绕点逆时针旋转,得到,连接,则≌,,,,∴,根据勾股定理得,.∵,∴.又∵,∴,∴是直角三角形,且,∴;(3)如图3,将△APB绕点A按逆时针方向旋转60°,得到△AP'C,
∴∠AP'C=∠APB=360°-90°-120°=150°.∵AP=AP',∴△APP'是等边三角形,∴PP'=AP,∠AP'P=∠APP'=60°,∴∠PP'C=90°,∠P'PC=30°,∴,即.∵APC=90°,∴AP2+PC2=AC2,且,∴PC=2,∴,∴.【题目点拨】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,旋转的性质,全等三角形的性质,勾股定理及其逆定理,正确作出辅助线是解本题的关键.23、(1)y1=,y1=﹣x+4;(1)4;(3)当x满足1<x<3、x<2时,则y1>y1.【分析】(1)把点A(1,3)代入y1=,求出k,得到反比例函数的解析式;再把B(3,m)代入反比例函数的解析式,求出m,得到点B的坐标,把A、B两点的坐标代入y1=ax+b,利用待定系数法求出一次函数的解析式;
(1)把x=2代入一次函数解析式,求出y1=4,得到C点的坐标,把y1=2代入一次函数解析式,求出x=4,得到D点坐标,再根据S△AOB=S△AOD-S△BOD,列式计算即可;
(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.【题目详解】解:(1)把点A(1,3)代入y1=,则3=,即k=3,故反比例函数的解析式为:y1=.把点B的坐标是(3,m)代入y1=,得:m==1,∴点B的坐标是(3,1).把A(1,3),B(3,1)代入y1=ax+b,得,解得,故一次函数的解析式为:y1=﹣x+4;(1)令x=2,则y1=4;令y1=2,则x=4,∴C(2,4),D(4,2),∴S△AOB=S△AOD﹣S△BOD=×4×3﹣×4×1=4;(3)由图像可知x<2、1<x<3时,一次函数落在反比例函数图象上方,故满足y1>y1条件的自变量的取值范围:1<x<3、x<2.【题目点拨】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中.利用了数形结合思想.24、(1)详见解析;(2)详见解析;(3)DE=1.【分析】(1)根据垂径定理可得AD=CD,得PD是AC的垂直平分线,可判断出PA=PC;(2)由PC=PA得出∠PAC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出结论;(2)根据AB和DF的比设AB=3a,DF=2a,先根据三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年设备监理师考试题库含答案【预热题】
- 家政服务卫生安全规定
- 花艺圆形花束课程设计
- 电子行业产品知识培训总结
- 项目立项申请计划
- 文化艺术行业市场总结
- 销售业绩评估方法培训
- 青少年法治教育工作安排计划
- 出版合同范本(2篇)
- 2024施工安全生产承诺书范文(34篇)
- 强基计划模拟卷化学
- 工程项目施工方案比选
- 盾构始发施工技术要点PPT(44页)
- 甲烷(沼气)的理化性质及危险特性表
- 某钢铁有限责任公司管理专案报告书---提升配电系统管理水平降低变配电装置事故率
- 促销费用管理办法15
- 《三国演义》整本书阅读任务单
- GB 13296-2013 锅炉、热交换器用不锈钢无缝钢管(高清版)
- 企业信用管理制度
- 中医院中药的饮片处方用名与调剂给付规定
- 钻孔灌注桩及后注浆施工方案施工方案
评论
0/150
提交评论