版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省唐山市名校九年级数学第一学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24 B.33 C.56 D.422.下列各数:-2,,,,,,0.3010010001…,其中无理数的个数是()个.A.4 B.3 C.2 D.13.下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为,,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生4.在正方形网格中,△ABC的位置如图所示,则cos∠B的值为(
)A. B. C. D.15.一元二次方程的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根6.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元7.关于x的一元二次方程x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣2 B.2 C.5 D.﹣48.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b29.二次函数的图象如图,则一次函数的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限10.如果可以通过配方写成的形式,那么可以配方成()A. B. C. D.11.如图,⊙O的半径为6,点A、B、C在⊙O上,且∠BCA=45°,则点O到弦AB的距离为()A.3 B.6 C.3 D.612.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为6,则k的值等于_____.14.将二次函数化成的形式,则__________.15.数据8,8,10,6,7的众数是__________.16.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°17.如图,直线,等腰直角三角形的三个顶点分别在,,上,90°,交于点,已知与的距离为2,与的距离为3,则的长为________.18.如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.三、解答题(共78分)19.(8分)计算:2cos60°+4sin60°•tan30°﹣cos45°20.(8分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?21.(8分)在正方形中,点是直线上动点,以为边作正方形,所在直线与所在直线交于点,连接.(1)如图1,当点在边上时,延长交于点,与交于点,连接.①求证:;②若,求的值;(2)当正方形的边长为4,时,请直接写出的长.22.(10分)公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?23.(10分)(1)已知,求的值;(2)已知直线分别截直线于点,截直线于点,且,,求的长.24.(10分)如图,在中,,以为直径作交于于于.求证:是中点;求证:是的切线25.(12分)如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.26.如图,在中,.以为直径的与交于点,与交于点,点在边的延长线上,且.(1)试说明是的切线;(2)过点作,垂足为.若,,求的半径;(3)连接,设的面积为,的面积为,若,,求的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【题目详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【题目点拨】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.2、B【分析】无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环,也就是说它是无限不循环小数.常见的无理数有大部分的平方根、π等.【题目详解】根据无理数的定义,下列各数:-2,,,,,,0.3010010001…,其中无理数是:,,0.3010010001…故选:B【题目点拨】考核知识点:无理数.理解无理数的定义是关键.3、C【分析】全面调查与抽样调查的优缺点:全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做众数.【题目详解】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为,,说明甲的跳远成绩比乙稳定,B错误;C.一组数据,,,的众数是,中位数是,正确;D.可能性是的事件在一次试验中可能会发生,D错误.故选C.【题目点拨】本题考查了统计的应用,正确理解概率的意义是解题的关键.4、A【解题分析】作AD⊥BC,可得AD=BD=5,利用勾股定理求得AB,再由余弦函数的定义求解.【题目详解】作AD⊥BC于点D,则AD=5,BD=5,∴AB===5,∴cos∠B===.故选A.【题目点拨】本题考查锐角三角函数的定义.5、D【分析】先根据计算判别式的值,然后根据判别式的意义判断方程根的情况.【题目详解】因为△=,所以方程无实数根.故选:D.【题目点拨】本题考查了根的判别式:一元二次方程的根与有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6、A【解题分析】.所以4月份营业额约为3×30=90(万元).7、B【分析】把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,然后解关于m的方程即可.【题目详解】解:把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,解得m=1.故选:B.【题目点拨】本题主要考查对一元二次方程的解,解一元一次方程,等式的性质等知识点的理解和掌握8、B【解题分析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式9、C【解题分析】∵抛物线的顶点在第四象限,∴﹣>1,<1.∴<1,∴一次函数的图象经过二、三、四象限.故选C.10、B【分析】根据配方法即可求出答案.【题目详解】∵x2−8x+m=0可以通过配方写成(x−n)2=6的形式,∴x2−8x+16=16−m,x2−2nx+n2=6,∴n=4,m=10,∴x2+8x+m=x2+8x+10=0,∴(x+4)2=6,即故选:B.【题目点拨】本题考查一元二次方程,解题的关键是熟练运用配方法,本题属于基础题型.11、C【分析】连接OA、OB,作OD⊥AB于点D,则△OAB是等腰直角三角形,得到ODAB,即可得出结论.【题目详解】连接OA、OB,作OD⊥AB于点D.∵△OAB中,OB=OA=6,∠AOB=2∠ACB=90°,∴AB.又∵OD⊥AB于点D,∴ODAB=.故选C.【题目点拨】本题考查了圆周角定理,得到△OAB是等腰直角三角形是解答本题的关键.12、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【题目详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【题目点拨】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.二、填空题(每题4分,共24分)13、﹣1【分析】根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k的值,本题得以解决.【题目详解】解:设点A的坐标为(a,0),点C的坐标为(c,),则﹣a•=6,点D的坐标为(,),∴,解得,k=﹣1,故答案为﹣1.【题目点拨】本题考查反比例函数系数的几何意义、反比例函数的性质、菱形的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.14、【分析】利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【题目详解】解:,,.故答案为:.【题目点拨】本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.15、1【分析】根据众数的概念即可得出答案.【题目详解】众数是指一组数据中出现次数最多的数,题中的1出现次数最多,所以众数是1故答案为:1.【题目点拨】本题主要考查众数,掌握众数的概念是解题的关键.16、B.【解题分析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.17、【分析】作AF⊥,BE⊥,证明△ACF≌△CBE,求出CE,根据勾股定理求出BC、AC,作DH⊥,根据DH∥AF证明△CDH∽△CAF,求出CD,再根据勾股定理求出BD.【题目详解】如图,作AF⊥,BE⊥,则∠AFC=BEC=90°,由题意得BE=3,AF=2+3=5,∵△是等腰直角三角形,90°,∴AC=BC,∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∴△ACF≌△CBE,∴CE=AF=5,CF=BE=3,∴,作DH⊥,∴DH∥AF∴△CDH∽△CAF,∴,∴,∴CD=,∴BD=,故答案为:.【题目点拨】此题考查等腰直角三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,平行线间的距离处处相等的性质,正确引出辅助线解决问题是解题的关键.18、-1【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【题目详解】∵y=−x(x−2)(0≤x≤2),∴配方可得y=−(x−1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,−1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,−1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,−1),A6(12,0);∴m=−1.故答案为:-1.【题目点拨】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标,学会从一般到特殊的探究方法,属于中考常考题型.三、解答题(共78分)19、3﹣.【分析】直接利用特殊角的三角函数值代入求出答案.【题目详解】2cos60°+4sin60°•tan30°﹣cos45°=2×+4××﹣=1+2﹣=3﹣.【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20、1米/秒【解题分析】分析:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.本题解析:解:过点C作CD⊥AB于点D.设AD=x米,小明的行走速度是a米/秒.∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x(米).在Rt△BCD中,∵∠B=30°,∴BC==2x(米).∵小军的行走速度为米/秒,若小明与小军同时到达山顶C处,∴=,解得a=1.答:小明的行走速度是1米/秒.21、(1)①证明见解析;②;(2)或.【分析】(1)通过正方形的性质和等量代换可得到,从而可用SAS证明,利用全等的性质即可得出;(2)先证明,则有,进而可证明,得到,再利用得出,作交EH于点P,则,利用相似三角形的性质得出,则问题可解;(3)设,则,表示出EH,然后利用解出x的值,进而可求EH的长度;当E在BA的延长线上时,画出图形,用同样的方法即可求EH的长度.【题目详解】(1)①证明:∵四边形ABCD,DEFG都是正方形∴∵在和中,②∵四边形DEFG是正方形在和中,在和中,∵作交EH于点P,则(3)当点E在AB边上时,设,则解得∴当E在BA的延长线上时,如下图∵四边形ABCD,DEFG都是正方形∴∵在和中,∴点G在BC边上∵四边形DEFG是正方形在和中,设,则解得∴综上所述,EH的长度为或.【题目点拨】本题主要考查全等三角形的判定及性质,相似三角形的判定及性质,正方形的性质,掌握全等三角形和相似三角形的判定及性质并分情况讨论是解题的关键.22、(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y和x的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m与x的函数图象,列出m与x的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【题目详解】(1)如果8x=70得x=>5,不符合题意;如果5x+10=70得x=1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m=40当5<x≤15时,设m=kx+b将(5,40)(15,60)代入,得∴且b=30∴m=2x+30①当0≤x≤5时w=(62﹣40)•8x=176x∵w随x的增大而增大∴当x=5时,w最大为880;②当5<x≤15时w=(62﹣2x﹣30)(5x+10)=﹣10x2+140x+320∴当x=7时,w最大为810∵880>810∴当x=5时,w取得最大值为880元故第5天时利润最大,最大利润为880元.【题目点拨】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.23、(1)9;(2)6.【分析】(1)交叉相乘,化简后同除以y即可得出答案;(2)根据平行线的性质计算即可得出答案.【题目详解】解:(1)∴;(2)∵∴即:∴【题目点拨】本题考查的是解分式方程以及平行线的性质,比较简单,需要熟练掌握相关基础知识.24、(1)详见解析,(2)详见解析【分析】(1)连接AD,利用等腰三角形三线合一即可证明是中点;(2)连接OD,通过三角形中位线的性质得出,则有OD⊥DE,则可证明结论.【题目详解】(1)连接AD.∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,(2)连接OD.∵AO=BO,BD=DC,∴,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.【题目点拨】本题主要考查等腰三角形三线合一和切线的判定,掌握等腰三角形三线合一和切线的判定方法是解题的关键.25、(1)y=-x2-2x+1,(-1,4);(2)△BCD是直角三角形.理由见解析;(1)P1(0,0),P2(0,−),P1(−9,0).【分析】(1)利用待定系数法即可求得函数的解析式;
(2)利用勾股定理求得△BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;
(1)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解.【题目详解】(1)设抛物线的解析式为y=ax2+bx+c
由抛物线与y轴交于点C(0,1),可知c=1.即抛物线的解析式为y=ax2+bx+1.
把点A(1,0)、点B(-1,0)代入,得解得a=-1,b=-2
∴抛物线的解析式为y=-x2-2x+1.
∵y=-x2-2x+1=-(x+1)2+4
∴顶点D的坐标为(-1,4);
(2)△BCD是直角三角形.
理由如下:过点D分别作x轴、y轴的垂线,垂足分别为E、F.
∵在Rt△BOC中,OB=1,OC=1,
∴BC2=OB2+OC2=18
在Rt△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年设备监理师考试题库含答案【预热题】
- 家政服务卫生安全规定
- 花艺圆形花束课程设计
- 电子行业产品知识培训总结
- 项目立项申请计划
- 文化艺术行业市场总结
- 销售业绩评估方法培训
- 青少年法治教育工作安排计划
- 出版合同范本(2篇)
- 2024施工安全生产承诺书范文(34篇)
- 来料检验员工作总结
- 工商企业管理专业教学资源库申报书-专业教学资源库备选项目材料
- 智能充电桩的管理与优化调度
- 急诊科副主任个人工作述职报告
- 硬件工程师年终总结报告
- 音乐盛典策划方案
- 学校新媒体管理制度规章
- 狐狸的生物学
- 全球气候变化和应对措施
- 小麦冬季管理技术意见
- GB/T 16462.2-2023数控车床和车削中心检验条件第2部分:立式机床几何精度检验
评论
0/150
提交评论