2024届湖南省岳阳汨罗市弼时片数学九年级第一学期期末综合测试模拟试题含解析_第1页
2024届湖南省岳阳汨罗市弼时片数学九年级第一学期期末综合测试模拟试题含解析_第2页
2024届湖南省岳阳汨罗市弼时片数学九年级第一学期期末综合测试模拟试题含解析_第3页
2024届湖南省岳阳汨罗市弼时片数学九年级第一学期期末综合测试模拟试题含解析_第4页
2024届湖南省岳阳汨罗市弼时片数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省岳阳汨罗市弼时片数学九年级第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A. B. C. D.2.的绝对值是()A. B.2020 C. D.3.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B. C. D.4.下列图形中,可以看作是中心对称图形的为()A. B. C. D.5.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,矩形ABCD内的一个动点P落在阴影部分的概率是()A. B. C. D.6.反比例函数的图像经过点,,则下列关系正确的是()A. B. C. D.不能确定7.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,3,4 C.3,4,7 D.5,2,88.下列命题是真命题的是()A.在同圆或等圆中,等弧所对的圆周角相等B.平分弦的直径垂直于弦C.在同圆或等圆中,等弦所对的圆周角相等D.三角形外心是三条角平分线的交点9.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)10.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形11.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似()A.①处 B.②处 C.③处 D.④处12.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.6二、填空题(每题4分,共24分)13.二次函数的图象如图所示,对称轴为.若关于的方程(为实数)在范围内有实数解,则的取值范围是__________.14.关于x的方程的解是,(a,m,b均为常数,),则关于x的方程的解是________.15.如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)16.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.17.当x_____时,|x﹣2|=2﹣x.18.菱形的两条对角线分别是,,则菱形的边长为________,面积为________.三、解答题(共78分)19.(8分)如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.20.(8分)西安市某中学数学兴趣小组在开展“保护环境,爱护树木”的活动中,利用课外时间测量一棵古树的高,由于树的周围有水池,同学们在低于树基3.3米的一平坝内(如图).测得树顶A的仰角∠ACB=60°,沿直线BC后退6米到点D,又测得树顶A的仰角∠ADB=45°.若测角仪DE高1.3米,求这棵树的高AM.(结果保留两位小数,≈1.732)21.(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用15m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m1.22.(10分)已知△ABC和△A′B′C′的顶点坐标如下表:(1)将下表补充完整,并在下面的坐标系中,画出△A′B′C′;(,)(,)(2)观察△ABC与△A′B′C′,写出有关这两个三角形关系的一个正确结论.23.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.24.(10分)如图,ABCD是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在AD的延长线上,DG

=2BE.设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?25.(12分)(1)解方程:.(2)如图,四点都在上,为直径,四边形是平行四边形,求的度数.26.如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】等量关系为:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,把相关数值代入即可得到所求的方程组.【题目详解】解:∵鸡有2只脚,兔有4只脚,∴可列方程组为:,故选D.【题目点拨】本题考查了由实际问题抽象出二元一次方程组.如何列出二元一次方程组的关键点在于从题干中找出等量关系.2、B【分析】根据绝对值的定义直接解答.【题目详解】解:根据绝对值的概念可知:|−2121|=2121,故选:B.【题目点拨】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.3、A【解题分析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是.故选A.4、B【分析】根据中心对称的定义,结合所给图形即可作出判断.【题目详解】A、不是中心对称图形,故本选项错误;

B、是中心对称图形,故本选项正确;

C、不是中心对称图形,故本选项错误;

D、不是中心对称图形,故本选项错误;

故选:B.【题目点拨】此题考查中心对称图形的特点,解题关键在于判断中心对称图形的关键是旋转180°后能够重合.5、B【解题分析】根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.【题目详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,,∴△EBO≌△FDO,∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△OBC=S矩形ABCD.故选B.【题目点拨】本题考查了矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.6、B【分析】根据点的横坐标结合反比例函数图象上点的坐标特征即可求出y1、y2的值,比较后即可得出结论.【题目详解】解:∵反比例函数的图象经过点,,

∴y1=3,y2=,

∵3>,

∴.

故选:B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,根据点的横坐标利用反比例函数图象上点的坐标特征求出点的纵坐标是解题的关键.7、B【解题分析】根据三角形三边关系定理得出:如果较短两条线段的和大于最长的线段,则三条线段可以构成三角形,由此判定即可.【题目详解】A.1+2=3,不能构成三角形,故此选项错误;B.2+3>4,能构成三角形,故此选项正确;C.3+4=7,不能构成三角形,故此选项错误;D.5+2<8,不能构成三角形,故此选项错误.故选:B.【题目点拨】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8、A【分析】根据圆的性质,垂径定理,圆周角定理,三角形外心的定义,对照选项逐一分析即可.【题目详解】解:A.在同圆或等圆中,等弧所对的圆周角相等,是真命题;B.平分弦(弦不是直径)的直径垂直于弦,故原命题是假命题;C.在同圆或等圆中,等弦所对的圆周角相等,弦对着两个圆周角,故是假命题;D.三角形外心是三条边垂直平分线的交点,故是假命题;故选:A.【题目点拨】本题考查了圆的性质,垂径定理,圆周角定理,三角形外心的定义,掌握圆的性质和相关定理内容是解题的关键.9、D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【题目详解】如图所示:黑(3,1),白(3,3).故选D.【题目点拨】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键.10、B【分析】试题分析:由tanA=1,sinB=结合特殊角的锐角三角函数值可得∠A、∠B的度数,即可判断△ABC的形状.【题目详解】∵tanA=1,sinB=∴∠A=45°,∠B=45°∴△ABC是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.11、B【分析】确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可.【题目详解】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为;“车”、“炮”之间的距离为1,“炮”②之间的距离为,“车”②之间的距离为2,∵∴马应该落在②的位置,故选B【题目点拨】本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大.12、C【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【题目详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【题目点拨】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.二、填空题(每题4分,共24分)13、【分析】先求出函数解析式,求出函数值取值范围,把t的取值范围转化为函数值的取值范围.【题目详解】由已知可得,对称轴所以b=-2所以当x=1时,y=-1即顶点坐标是(1,-1)当x=-1时,y=3当x=4时,y=8由得因为当时,所以在范围内有实数解,则的取值范围是故答案为:【题目点拨】考核知识点:二次函数和一元二次方程.数形结合分析问题,注意函数的最低点和最高点.14、x1=-12,x2=1【分析】把后面一个方程中的x+3看作一个整体,相当于前面方程中的x来求解.【题目详解】解:∵关于x的方程的解是,(a,m,b均为常数,a≠0),∴方程变形为,即此方程中x+3=-9或x+3=11,解得x1=-12,x2=1,故方程的解为x1=-12,x2=1.故答案为x1=-12,x2=1.【题目点拨】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算.15、【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【题目详解】解:点,反比例函数经过点B,则点,则,,∴,设,则,,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为.【题目点拨】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.16、【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【题目详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=.故答案为.【题目点拨】本题考查了概率公式,概率=发生的情况数÷所有等可能情况数.17、≤2【分析】由题意可知x﹣2为负数或0,进而解出不等式即可得出答案.【题目详解】解:由|x﹣2|=2﹣x,可得,解得:.故答案为:≤2.【题目点拨】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关知识是解题的关键.18、【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【题目详解】∵菱形的两条对角线长分别为6cm,8cm,∴对角线的一半分别为3cm,4cm,∴根据勾股定理可得菱形的边长为:=5cm,∴面积S=×6×8=14cm1.故答案为5;14.【题目点拨】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.三、解答题(共78分)19、周长=32,面积=32.【分析】由在菱形ABCD中,∠ABC=60°,可得△ABC是等边三角形,又由对角线AC=1,即可求得此菱形的边长,进而可求出菱形的周长,再根据菱形的面积等于对角线乘积的的一半即可求出其面积.【题目详解】∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=1.∴菱形ABCD的周长=4×1=32,∵BO==4,∴BD=2BO=1,∴菱形ABCD的面积=×1×=32.【题目点拨】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.20、12.20米【分析】可在Rt△ABD和Rt△ABC中,利用已知角的三角函数,用AB表示出BD、BC,根据CD=BD﹣BC=6即可求出AB的长;已知HM、DE的长,易求得BM的值,由AM=AB﹣BM即可求出树的高度.【题目详解】设AB=x米.Rt△ABD中,∠ADB=45°,BD=AB=x米.Rt△ACB中,∠ACB=60°,BC=AB÷tan60°x米.CD=BD﹣BC=(1)x=6,解得:x=9+3,即AB=(9+3)米.∵BM=HM﹣DE=3.3﹣1.3=2,∴AM=AB﹣BM=7+312.20(米).答:这棵树高12.20米.【题目点拨】本题考查了解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题.21、可以围成AB的长为15米,BC为10米的矩形【解题分析】解:设AB=xm,则BC=(50﹣1x)m.根据题意可得,x(50﹣1x)=300,解得:x1=10,x1=15,当x=10,BC=50﹣10﹣10=30>15,故x1=10(不合题意舍去).答:可以围成AB的长为15米,BC为10米的矩形.根据可以砌50m长的墙的材料,即总长度是50m,AB=xm,则BC=(50﹣1x)m,再根据矩形的面积公式列方程,解一元二次方程即可.22、(1)详见解析;(2)相似【分析】(1)利用坐标的变化规律得出答案;(2)根据所画的图形,利用对应点位置得到线段的长度,即可得到结论.【题目详解】解:(1)B′(

8,6

),C′(

10,2

),

如图所示:△A′B′C′即为所求;故答案为:8,6;10,2;(2)根据表格和所画的图形可知,,∴.【题目点拨】此题主要考查了位似变换,正确得出对应点位置是解题关键.23、(1)图见解析;(2)图见解析;路径长π.【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,然后计算出OB的长后利用弧长公式计算点B旋转到点B2所经过的路径长.【题目详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论