2024届浙江省台州市第四协作区数学九上期末检测模拟试题含解析_第1页
2024届浙江省台州市第四协作区数学九上期末检测模拟试题含解析_第2页
2024届浙江省台州市第四协作区数学九上期末检测模拟试题含解析_第3页
2024届浙江省台州市第四协作区数学九上期末检测模拟试题含解析_第4页
2024届浙江省台州市第四协作区数学九上期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省台州市第四协作区数学九上期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠D=110°,则∠AOC的度数为()A.130° B.135° C.140° D.145°2.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.113.下列调查中,适合采用全面调查(普查)方式的是()A.了解重庆市中小学学生课外阅读情况B.了解重庆市空气质量情况C.了解重庆市市民收看重庆新闻的情况D.了解某班全体同学九年级上期第一次月考数学成绩得分的情况4.已知∠A是锐角,,那么∠A的度数是()A.15° B.30° C.45° D.60°5.如图,点D,E分别在△ABC的边AB,AC上,且DE//BC,若AD=2,DB=1,AC=6,则AE等于()A.2 B.3 C.4 D.56.已知的半径为,点到直线的距离为,若直线与公共点的个数为个,则可取()A. B. C. D.7.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A. B. C. D.8.下列结论正确的是()A.垂直于弦的弦是直径 B.圆心角等于圆周角的2倍C.平分弦的直径垂直该弦 D.圆内接四边形的对角互补9.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.10.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣;⑤c-3a>0其中正确结论有()A.1个 B.3个 C.4个 D.5个二、填空题(每小题3分,共24分)11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=°.12.已知四条线段a、2、6、a+1成比例,则a的值为_____.13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:其中正确结论有_____.①abc>0;②16a+4b+c<0;③4ac﹣b2<8a;④<a;⑤b<c.14.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.15.如果在比例尺1:100000的滨海区地图上,招宝山风景区与郑氏十七房的距离约是19cm,则它们之间的实际距离约为_____千米.16.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为________.18.如图所示,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转,得,则点的坐标为_________.三、解答题(共66分)19.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3),对称轴为x=1,点D与C关于抛物线的对称轴对称.(1)求抛物线的解析式及点D的坐标;(2)点P是抛物线上的一点,当△ABP的面积是8时,求出点P的坐标;(3)点M为直线AD下方抛物线上一动点,设点M的横坐标为m,当m为何值时,△ADM的面积最大?并求出这个最大值.20.(6分)已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.21.(6分)为了测量山坡上的电线杆PQ的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为30°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是60°,求信号塔PQ得高度.22.(8分)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.23.(8分)计算:—.24.(8分)解方程组:.25.(10分)综合与实践在数学活动课上,老师出示了这样一个问题:如图1,在中,,,,点为边上的任意一点.将沿过点的直线折叠,使点落在斜边上的点处.问是否存在是直角三角形?若不存在,请说明理由;若存在,求出此时的长度.探究展示:勤奋小组很快找到了点、的位置.如图2,作的角平分线交于点,此时沿所在的直线折叠,点恰好在上,且,所以是直角三角形.问题解决:(1)按勤奋小组的这种折叠方式,的长度为.(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来.(3)在(2)的条件下,求出的长.26.(10分)如图,为的直径,点为延长线上的一点,过点作的切线,切点为,过两点分别作的垂线,垂足分别为,连接.求证:(1)平分;(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据“圆内接四边形的对角互补”,由∠D可以求得∠B,再由圆周角定理可以求得∠AOC的度数.【题目详解】解:∵∠D=110°,∴∠B=180°﹣110°=70°,∴∠AOC=2∠B=140°,故选C.【题目点拨】本题考查圆周角定理及圆内接四边形的性质,熟练掌握有关定理和性质的应用是解题关键.2、A【解题分析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:

110°•(n-2)=3×360°

解得n=1.

故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.3、D【解题分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【题目详解】解:A、了解重庆市中小学学生课外阅读情况,由于范围较大,适合用抽样调查;故此选项错误;B、了解重庆市空气质量情况,适合抽样调查,故此选项错误;C、了解重庆市市民收看重庆新闻的情况,由于范围较大,适合用抽样调查;故此选项错误;D、了解某班全体同学九年级上期第一次月考数学成绩得分的情况,范围较小,采用全面调查;故此选项正确;故选:D.【题目点拨】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.4、C【分析】根据特殊角的三角函数值求解即可.【题目详解】∵,且∠A是锐角,∴∠A=45°.故选:C.【题目点拨】本题主要考查了特殊角的三角函数值,熟练掌握相关数值是解题关键.5、C【分析】根据平行线分线段成比例定理,列出比例式求解,即可得到AE的长.【题目详解】解:∵DE//BC∴AE:AC=AD:AB,∵AD=2,DB=1,AC=6,∴,∴AE=4,故选:C.【题目点拨】本题考查了平行线分线段成比例定理,注意线段之间的对应关系.6、A【分析】根据直线和圆的位置关系判断方法,可得结论.【题目详解】∵直线m与⊙O公共点的个数为2个,

∴直线与圆相交,

∴d<半径,∴d<3,

故选:A.【题目点拨】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d:①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.7、B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【题目详解】解:列表得:

123456123456723456783456789456789105678910116789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,

∴掷得面朝上的点数之和是5的概率是:.

故选:B.【题目点拨】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.8、D【分析】分别根据垂径定理、圆周角定理及圆内接四边形的性质对各选项进行逐一分析即可.【题目详解】解:A,垂直于弦的弦不一定是直径,故本选项错误;B,在同圆或等圆中,同弧或等弧所对的圆心角等于圆周角的2倍,故本选项错误;C,平分弦的直径垂直该弦(非直径),故本选项错误;D,符合圆内接四边形的性质故本选项正确.故选:D.【题目点拨】本题主要考查了垂径定理、圆周角定理以及圆内接四边形的基本性质.9、C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【题目详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【题目点拨】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、D【分析】根据二次函数的图项与系数的关系即可求出答案.【题目详解】①∵图像开口向下,,∵与y轴的交点B在(0,1)与(0,3)之间,,∵对称轴为x=1,,∴b=-4a,∴b>0,∴abc<0,故①正确;②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,∴图像与x轴的另一个交点为(5,0),∴根据图像可以看出,当x=3时,函数值y=9a+3b+c>0,故②正确;③∵点,∴点M到对称轴的距离为,点N到对称轴的距离为,∴点M到对称轴的距离大于点N到对称轴的距离,∴,故③正确;④根据图像与x轴的交点坐标可以设函数的关系式为:y=a(x-5)(x+1),把x=0代入得y=-5a,∵图像与y轴的交点B在(0,1)与(0,3)之间,,解不等式组得,故④正确;⑤∵对称轴为x=1,∴b=-4a,当x=1时,y=a+b+c=a-4a+c=c-3a>0,故⑤正确;综上分析可知,正确的结论有5个,故D选项正确.故选D.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax1+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方.二、填空题(每小题3分,共24分)11、70【解题分析】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.12、3【分析】由四条线段a、2、6、a+1成比例,根据成比例线段的定义,即可得=,即可求得a的值.【题目详解】解:∵四条线段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合题意,舍去).故答案为3.【题目点拨】本题考查了线段成比例的定义:若四条线段a,b,c,d成比例,则有a:b=c:d.13、①③④.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标、顶点坐标等知识,逐个判断即可.【题目详解】抛物线开口向上,因此a>0,对称轴为x=1>0,a、b异号,故b<0,与y轴的交点B在(0,﹣2)和(0,﹣1)之间,即﹣2<c<﹣1,所以abc>0,故①正确;抛物线x轴交于点A(﹣1,0),对称轴为x=1,因此与x轴的另一个交点为(3,0),当x=4时,y=16a+4b+c>0,所以②不正确;由对称轴为x=1,与y轴交点在(0,﹣2)和(0,﹣1)之间,因此顶点的纵坐标小于﹣1,即<﹣1,也就是4ac﹣b2<﹣4a,又a>0,所以4ac﹣b2<8a是正确的,故③是正确的;由题意可得,方程ax2+bx+c=0的两个根为x1=﹣1,x2=3,又x1•x2=,即c=﹣3a,而﹣2<c<﹣1,也就是﹣2<﹣3a<﹣1,因此<a<,故④正确;抛物线过(﹣1,0)点,所以a﹣b+c=0,即a=b﹣c,又a>0,即b﹣c>0,得b>c,所以⑤不正确,综上所述,正确的结论有三个:①③④,故答案为:①③④.【点评】本题考查了二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.14、4π【解题分析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【题目详解】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长=,故答案为4π.【题目点拨】本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.15、1.【分析】根据比例尺=图上距离∶实际距离,列比例式即可求得它们之间的实际距离.要注意统一单位.【题目详解】解:设它们之间的实际距离为xcm,1∶100000=1∶x,解得x=100000.100000cm=1千米.所以它们之间的实际距离为1千米.故答案为1.【题目点拨】本题考查了比例线段.熟练运用比例尺进行计算,注意单位的转换.16、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【题目详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【题目点拨】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、答案不唯一,如y=x2﹣4x+2,即y=(x﹣2)2﹣1.【分析】由题意得,设,此时可令的数,然后再由与y轴的交点坐标为(0,2)求出k的值,进而可得到二次函数的解析式.【题目详解】解:设,将(0,2)代入,解得,故或y=x2﹣4x+2.故答案为:答案不唯一,如y=x2﹣4x+2,即y=(x﹣2)2﹣1.考点:1.二次函数的图象及其性质;2.开放思维.18、【分析】把点A绕点O顺时针旋转90°得到点A′,看其坐标即可.【题目详解】解:由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,由图中可以看出,点A′的坐标为(1,3),

故答案为A′(1,3).【题目点拨】本题考查点的旋转坐标的求法;得到关键点旋转后的位置是解题的关键.三、解答题(共66分)19、(2)y=x2﹣2x﹣3,D(2,﹣3);(2)P(2﹣2,4)或(2+2,4)或(2,﹣4);(3)m=时,△AMD的最大值为【分析】(2)由抛物线y=x2+bx+c的对称轴为x=2,求出b的值,再由点C的坐标求出c的值即可;(2)先求出点A,点B的坐标,设点P的坐标为(s,t),因为△ABP的面积是8,根据三角形的面积公式可求出t的值,再将t的值代入抛物线解析式即可;(3)求出直线AD的解析式,过点M作MN∥y轴,交AD于点N,则点M的坐标为(m,m2﹣2m﹣3),点N的坐标为(m,﹣m﹣2),用含m的代数式表示出△AMN的面积,配方后由二次函数的性质即可得出结论.【题目详解】(2)∵抛物线y=x2+bx+c的对称轴为x=2,∴2,∴b﹣=2.∵抛物线与y轴交于点C(0,﹣3),∴c=﹣3,∴抛物线的解析式为y=x2﹣2x﹣3,∴抛物线的对称轴为直线x=2.∵点D与C关于抛物线的对称轴对称,∴点D的坐标为(2,﹣3);(2)当y=0时,x2﹣2x﹣3=0,解得:x2=﹣2,x2=3,∴点A的坐标为(﹣2,0),点B的坐标为(3,0),∴AB=3﹣(﹣2)=4,设点P的坐标为(s,t).∵△ABP的面积是8,∴AB•|yP|=8,即4|t|=8,∴t=±4,①当t=4时,s2﹣2s﹣3=4,解得:,s2=,s2=,∴点P的坐标为(,4)或(,4);②当t=﹣4时,s2﹣2s﹣3=﹣4,解得:,s2=s2=2,∴点P的坐标为(2,﹣4);综上所述:当△ABP的面积是8时,点P的坐标为(,4)或(,4)或(2,﹣4);(3)设直线AD的解析式为y=kx+b2,将A(﹣2,0),D(2,﹣3)代入y=kx+b2,得:,解得:,∴直线AD的解析式为y=﹣x﹣2,过点M作MN∥y轴,交AD于点N.∵点M的横坐标是m(﹣2<m<2),∴点M的坐标为(m,m2﹣2m﹣3),点N的坐标为(m,﹣m﹣2),∴MN=﹣m﹣2﹣(m2﹣2m﹣3)=﹣m2+m+2,∴S△AMD=S△AMN+S△DMNMN•(m+2)MN•(2﹣m)MN(﹣m2+m+2)(m)2,∵0,﹣22,∴当m时,S△AMD,∴当m时,△AMD的最大值为.【题目点拨】本题考查了待定系数法求解析式,二次函数的图象及性质,函数的思想求最值等,解答本题的关键是注意分类讨论思想在解题过程中的运用.20、(1)50°,25°;(2)见解析【分析】(1)连接OD.证明△AOD≌△COD即可解决问题.(2)利用全等三角形的性质,等腰三角形的性质解决问题即可.【题目详解】(1)解:连接OD.∵,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∵∠ADC=∠AOC=50°,∴∠A=∠ADO=∠ADC=25°,故答案为50°,25°.(2)证明:∵△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∴∠ADC=2∠DAB.【题目点拨】本题考查的是圆的综合,难度中等,运用到了圆中的基本性质以及全等三角形的相关知识需要熟练掌握.21、100米【分析】延长PQ交直线AB于点M,连接AQ,设PM的长为x米,利用锐角三角函数即可求出x,再利用锐角三角函数即可求出QM,从而求出结论.【题目详解】解:延长PQ交直线AB于点M,连接AQ,如图所示:则∠PMA=90°,设PM的长为x米,在RtPAM中,∠PAM=45°,∴AM=PM=x米,∴BM=x﹣100(米),在RtPBM中,∵tan∠PBM,∴tan60°,解得:x=50(3),在RtQAM中,∵tan∠QAM,∴QM=AM•tan∠QAM=50(3)×tan30°=50()(米),∴PQ=PM﹣QM=100(米)答:信号塔PQ的高度约为100米.【题目点拨】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键.22、(1)(2)【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A、B、C,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【题目详解】(1)小智被分配到A“全程马拉松”项目组的概率为,故答案为:.(2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为.【题目点拨】本题主要考察概率,熟练掌握概率公式是解题关键.23、-3【分析】按顺序化简二次根式,代入特殊角的三角函数值,进行0次幂运算,负指数幂运算,然后再按运算顺序进行计算即可.【题目详解】解:-=-=-3【题目点拨】本题考查了特殊角的三角函数值,实数的混合运算等,正确把握各运算的运算法则是解题的关键.24、【分析】方程组利用加减消元法求出解即可.【题目详解】解:,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论