




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省剑河县2024届数学九上期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.2.已知线段a是线段b,c的比例中项,则下列式子一定成立的是()A. B. C. D.3.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±24.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BAD的度数是()A.60° B.80° C.100° D.120°5.已知二次函数y=ax2+bx+c的x、y的部分对应值如表:则该函数的对称轴为()A.y轴 B.直线x= C.直线x=1 D.直线x=6.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.7.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.168.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50° B.60° C.65° D.75°9.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.10.一个不透明的袋子装有除颜色外其余均相同的2个白球和个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则的值为()A.2 B.4 C.8 D.11二、填空题(每小题3分,共24分)11.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.12.如图是一个三角形点阵,从上向下数有无数多行,其中第一行有2个点,第二行有4个点……第n行有2n个点……,若前n行的点数和为930,则n是________.13.如图,已知正六边形内接于,若正六边形的边长为2,则图中涂色部分的面积为______.14.如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为____.
15.抛物线y=3(x﹣2)2+5的顶点坐标是_____.16.计算:=_____________17.如图,在反比例函数位于第一象限内的图象上取一点P1,连结OP1,作P1A1⊥x轴,垂足为A1,在OA1的延长线上截取A1B1=OA1,过B1作OP1的平行线,交反比例函数的图象于P2,过P2作P2A2⊥x轴,垂足为A2,在OA2的延长线上截取A2B2=B1A2,连结P1B1,P2B2,则的值是.18.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题(共66分)19.(10分)某小区的居民筹集资金1600元,计划在一块上、下底分别为10m、20m的梯形空地上种花(如图所示).(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2.当△AMD地带种满花后(图中阴影部分)花了160元,请计算种满△BMC地带所需的费用;(2)若△AMB和△DMC地带要种的有玫瑰花和茉莉花可供选择,单价分别为12元/m2和10元/m2,应选择哪一种花,刚好用完所筹集的资金?20.(6分)如图,已知△ABC,∠B=90゜,AB=3,BC=6,动点P、Q同时从点B出发,动点P沿BA以1个单位长度/秒的速度向点A移动,动点Q沿BC以2个单位长度/秒的速度向点C移动,运动时间为t秒.连接PQ,将△QBP绕点Q顺时针旋转90°得到△,设△与△ABC重合部分面积是S.(1)求证:PQ∥AC;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.21.(6分)如图1所示,六个小朋友围成一圈(面向圈内)做传球游戏,规定:球不得传给自己,也不得传给左手边的人.若游戏中传球和接球都没有失误.若由开始一次传球,则和接到球的概率分别是、;若增加限制条件:“也不得传给右手边的人”.现在球已传到手上,在下面的树状图2中画出两次传球的全部可能情况,并求出球又传到手上的概率.22.(8分)解方程:x2﹣2x﹣2=1.23.(8分)如图,在Rt△ABC中,∠A=90°,AC=3,AB=4,动点P从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,点Q为线段AP的中点,过点P向上作PM⊥AB,且PM=3AQ,以PQ、PM为边作矩形PQNM.设点P的运动时间为t秒.(1)线段MP的长为(用含t的代数式表示).(2)当线段MN与边BC有公共点时,求t的取值范围.(3)当点N在△ABC内部时,设矩形PQNM与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当点M到△ABC任意两边所在直线距离相等时,直接写出此时t的值.24.(8分)如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.25.(10分)如图,在梯形中,,,是延长线上的点,连接,交于点.(1)求证:∽(2)如果,,,求的长.26.(10分)如图所示的双曲线是函数为常数,)图象的一支若该函数的图象与一次函数的图象在第一象限的交点为,求点的坐标及反比例函数的表达式.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【题目详解】平移后的抛物线为故答案为A.【题目点拨】此题主要考查抛物线平移的性质,熟练掌握,即可解题.2、B【解题分析】根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.【题目详解】A选项,由得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【题目点拨】本题考核知识点:本题主要考查了比例线段.解题关键点:理解比例中项的意义.3、D【分析】根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.【题目详解】因为点M(a,2a)在反比例函数y=的图象上,可得:,,解得:,故选D.【题目点拨】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.4、B【分析】根据圆周角定理即可得到结论.【题目详解】解:∵∠BOD=160°,∴∠BAD=∠BOD=80°,故选:B.【题目点拨】本题考查了圆周角定理,理解熟记圆周角定理是解题关键..5、B【分析】根据表格中的数据可以写出该函数的对称轴,本题得以解决.【题目详解】解:由表格可得,该函数的对称轴是:直线x=,故选:B.【题目点拨】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.6、B【解题分析】利用一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,可求解.【题目详解】解:A:,化简后是:,不符合一元二次方程的定义,所以不是一元二次方程;
B:x2=0,是一元二次方程;
C:x2-2y=1含有两个未知数,不符合一元二次方程的定义,所以不是一元二次方程;
D:,分母含有未知数,是一元一次方程,所以不是一元二次方程;
故选:B.【题目点拨】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.7、A【解题分析】试题分析:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故选A.考点:扇形面积的计算.8、C【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以,然后根据三角形外角性质计算∠PCA的度数.【题目详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【题目点拨】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.9、D【解题分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【题目详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故选D.【题目点拨】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.10、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【题目详解】解:依题意有:=1.2,
解得:n=2.
故选:C.【题目点拨】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.二、填空题(每小题3分,共24分)11、1.【分析】由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长.【题目详解】在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∵AB=6,AD=4,∴,则CD=AC﹣AD=9﹣4=1.【题目点拨】考点:相似三角形的判定与性质.12、1【分析】根据题意得出这个点阵中前n行的点数和等于2+4+6+8+……+2n,再计算即可.【题目详解】解:根据题意知,2+4+6+8+……+2n
=2(1+2+3+…+n)
=2×n(n+1)
=n(n+1).∴,解得:(负值已舍去);故答案为:1.【题目点拨】此题考查图形的变化规律,结合图形,找出数字的运算规律,利用规律解决问题.13、【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【题目详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:.故答案为:.【题目点拨】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.14、1【解题分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,则AB=AD=1.【题目详解】如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即该船航行的距离(即AB的长)为1.故答案为1.【题目点拨】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.15、(2,5).【解题分析】试题分析:由于抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),由此即可求解.解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为(2,5).考点:二次函数的性质.16、-1【分析】根据二次根式的性质和负整数指数幂的运算法则进行计算即可.【题目详解】故答案为:-1.【题目点拨】此题主要考查了二次根式的性质以及负整数指数幂的运算法则,熟练掌握其性质和运算法则是解此题的关键.17、【题目详解】解:设P1点的坐标为(),P2点的坐标为(b,)∵△OP1B1,△B1P2B2均为等腰三角形,
∴A1B1=OA1,A2B2=B1A2,
∴OA1=a,OB1=2a,B1A2=b-2a,B1B2=2(b-2a),
∵OP1∥B1P2,
∴∠P1OA1=∠A2B1P2,
∴Rt△P1OA1∽Rt△P2B1A2,
∴OA1:B1A2=P1A1:P2A2,a:(b-2a)=整理得a2+2ab-b2=0,解得:a=()b或a=()b(舍去)∴B1B2=2(b-2a)=(6-4)b,∴故答案为:【题目点拨】该题较为复杂,主要考查学生对相似三角形的性质和反比例函数上的点的坐标与几何图形之间的关系.18、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【题目详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【题目点拨】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。三、解答题(共66分)19、(1)640元;(1)茉莉花.【分析】(1)由梯形的性质得到AD平行BC从而得到△AMD和△CMB相似,通过相似的性质即可得到△BMC的面积,即可算出所需费用;(1)通过三角形等高时,得到面积比等于底的比,即可通过△AMD得到△AMB的面积,同理得到△DMC的面积,再分别算出种植两种花时所需的费用,比较大小即可求出结果.【题目详解】解:(1)∵四边形ABCD是梯形,∴AD∥BC,∴△AMD∽△CMB,∴.∵种满△AMD地带花费160元,∴S△AMD==10(m1),∴S△CMB=4S△AMD=80(m1),∴种满△BMC地带所需的费用为80×8=640(元).(1)∵△AMD∽△CMB,∴===.∵△AMD与△AMB等高,∴,∴S△AMB=1S△AMD=40(m1).同理可求S△DMC=40m1.当△AMB和△DMC地带种植玫瑰花时,所需总费用为160+640+80×11=1760(元),当△AMB和△DMC地带种植茉莉花时,所需总费用为160+640+80×10=1600(元),∴种植茉莉花刚好用完所筹资金.【题目点拨】本题考查相似三角形的性质、梯形的几何特征,熟知三角形的性质是解题的关键.20、(1)见解析;(2)【分析】(1)由题意可得出,继而可证明△BPQ∽△BAC,从而证明结论;(2)由题意得出QP`⊥AC,分三种情况利用相似三角形的判定及性质讨论计算.【题目详解】解:(1)∵BP=t,BQ=2t,AB=3,BC=6∴∵∠B=∠B∴△BPQ∽△BAC∴∠BPQ=∠A∴PQ∥AC(2)∵BP=tBQ=2t∴P`Q=∵AB=3BC=6∴AC=3∵PQ∥AC∴QP`⊥AC当0<t≤时,S=t2当<t≤1时:设QP`交AC于点MP`B`交AC于点N∴∠QMC=∠B=90°∴△QMC∽△ABC∴∴∴QM=∵P`Q=t∴P`M=又∵∠P`=∠BPQ=∠A∴△P`NM∽△ACB∴∴MN=2P`M∴S△P`MN=P`M·MN=P`M2=∴当1<t≤3时设QB`交AC于点H∵∠HQM=∠PQB∴△HMQ∽△PBQ∴∴MH=MQ∴综合上所述:【题目点拨】本题是一道关于相似的综合题目,难度较大,涉及的知识点有相似三角形的判定及性质、勾股定理、三角形面积公式、旋转的性质等,需要有数形结合的能力以及较强的计算能力.21、(1);(2)【分析】(1)根据题目要求,球不得传给自己,也不得传给左手边的人,C在B的左手边,因此传给C的概率为0,B的右手边有四个人,因此传给F的概率为;(2)结合题目要求画出树状图即可求解.【题目详解】解:∵C在B的左手边∴C接到球的概率为0;∵B的右手边有四个人∴F接到球的概率为.如图所示:∵两次传球的全部可能情况有种,球又传到手上的情况有种,∴故球又传到手上的概率为.【题目点拨】本题考查的知识点是用画树状图法求事件的概率问题,读懂题意,画出树状图是解题的关键.22、x1=1+,x2=1﹣.【解题分析】试题分析:把常数项2移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.试题解析:x2﹣2x﹣2=1移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣1=±.解得x1=1+,x2=1﹣.考点:配方法解一元二次方程23、(1)3t;(2)满足条件的t的值为≤t≤;(3)S=;(4)满足条件的t的值为或或.【分析】(1)根据路程、速度、时间的关系再结合题意解答即可.(2)分别出点M、N落在BC上时的t的范围即可;(3)分重叠部分是矩形PQNM和五边形PQNEF两种情况进行解答即可;(4)按以下三种情形:当点M落在∠ABC的角平分线BF上时,满足条件.作FELBC于E;当点M落在∠ACB的角平分线上时,满足条件作EFLBC于F;当点M落在△ABC的∠ACB的外角的平分线上时,满足条件.分别求解即可解答.【题目详解】解:(1)由题意AP=2t,AQ=PQ=t,∵PM=3PQ,∴PM=3t.故答案为3t.(2)如图2﹣1中,当点M落在BC上时,∵PM∥AC,∴,∴,解得t=如图2﹣2中,当点N落在BC上时,∵NQ∥AC,∴,∴,解得t=,综上所述,满足条件的t的值为≤t≤.(3)如图3﹣1中,当0<t≤时,重叠部分是矩形PQNM,S=3t2如图3﹣2中,当<t≤时,重叠部分是五边形PQNEF.S=S矩形PQNM﹣S△EFM=3t2﹣•[3t﹣(4﹣2t)]•[3t﹣(4﹣2t)]=﹣t2+18t﹣6,综上所述,.(4)如图4﹣1中,当点M落在∠ABC的角平分线BF上时,满足条件.作FE⊥BC于E.∵∠FAB=∠FEB=90°,∠FBA=∠FBE,BF=BF,∴△BFA≌△BFE(AAS),∴AF=EF,AB=BE=4,设AF=EF=x,∵∠A=90°,AC=3,AB=4,∴BC==5,∴EC=BC﹣BE=5﹣4=1,在Rt△EFC中,则有x2+12=(3﹣x)2,解得x=,∵PM∥AF,∴,∴,∴t=如图4﹣2中,当点M落在∠ACB的角平分线上时,满足条件作EF⊥BC于F.同法可证:△ECA≌△ECF(AAS),∴AE=EF,AC=CF=3,设AE=EF=y,∴BF=5﹣3=2,在Rt△EFB中,则有x2+22=(4﹣x)2,解得x=,∵PM∥AC,∴,∴,解得t=.如图4﹣3中,当点M落在△ABC的∠ACB的外角的平分线上时,满足条件.设MC的延长线交BA的延长线于E,作EF⊥BC交BC的延长线于分,同法可证:AC=CF=3,EF=AE,设EF=EA=x,在Rt△EFB中,则有x2+82=(x+4)2,解得x=6,∵AC∥PM,∴,∴,解得t=,综上所述,满足条件的t的值为或或.【题目点拨】本题考查了矩形的性质,多边形的面积,角平分线的性质等知识,掌握分类讨论的思想思是解答本题的关键.24、(1)y=x+3或y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑项目合同范本:勘察与设计
- 山地旅游资源开发承包合同
- 钢材采购合同样本格式
- 餐饮服务与厨师雇佣合同范文
- 涂料供应与采购合同范本
- 合同档案寄存确认书
- 贷款合同模板:个人贷款标准合同范本
- 银行与公司短期贷款合同范例
- 气动系统培训课件
- 海豚培训课件下载
- 2024年江苏省苏锡常镇四市高三二模语文答案讲解课件
- 小学数学五年级下册必考《质数和合数》练习题(附质数合数知识点)
- 地中海风格室内设计
- 临床实习出科小结神经外科
- 碳酸钙市场分析及竞争策略分析报告
- 泡泡玛特展厅活动策划
- 健康生活方式与健康促进的科学研究
- 文旅部门消防培训课件
- 中职语文课件:1.1《送瘟神》课件14张2023-2024学年中职语文职业模块
- 胃疡(消化性溃疡)中医护理方案
- 《哲学概论(第2版)》-课件全套 第0-6章 绪论、哲学的形态-马克思主义哲学
评论
0/150
提交评论