




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省曲靖市沾益区大坡乡九年级数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克元,连续两次上涨后,售价上升到每千克元,则下列方程中正确的是()A. B.C. D.2.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是()A.10m B.10m C.15m D.5m3.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-34.如图,将矩形纸片ABCD折叠,使点A落在BC上的点F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形D.轴对称图形是正方形5.如图,平行于x轴的直线AC分别交函数y=x(x≥0)与y=x(x≥0)的图象于B,C两点,过点C作y轴的平行线交y=x(x≥0)的图象于点D,直线DE∥AC交y=x(x≥0)的图象于点E,则=()A. B.1 C. D.3﹣6.如图,四边形与四边形是位似图形,则位似中心是()A.点 B.点 C.点 D.点7.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.永州市2016年底大约有贫困人口13万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C. D.8.方程的解是()A. B. C., D.,9.如图,已知双曲线上有一点,过作垂直轴于点,连接,则的面积为()A. B. C. D.10.若,则的值为()A. B. C. D.11.如图,轴右侧一组平行于轴的直线···,两条相邻平行线之间的距离均为,以点为圆心,分别以···为半径画弧,分别交轴,···于点···则点的坐标为()A. B.C. D.12.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.14.在一个不透明的盒子里有2个红球和个白球,这些求除颜色外其余完全相同,摇匀后随机摸出一个,摸出红球的概率是,则的值为__________.15.若,,,则的度数为__________16.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB=_____.17.用配方法解一元二次方程,配方后的方程为,则n的值为______.18.已知线段a,b,c,d成比例线段,其中a=3cm,b=4cm,c=6cm,则d=_____cm;三、解答题(共78分)19.(8分)列方程解应用题.青山村种的水稻2010年平均每公顷产6000kg,2012年平均每公顷产7260kg,求水稻每公顷产量的年平均增长率.20.(8分)如图,矩形中,是边上一动点,过点的反比例函数的图象与边相交于点.(1)点运动到边的中点时,求反比例函数的表达式;(2)连接,求的值.21.(8分)解方程:2x2+3x﹣1=1.22.(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.23.(10分)如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC的长24.(10分)如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:00.511.522.533.5400.71.72.94.85.24.60请求出表中小东漏填的数;(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当的面积为时,求出的长.25.(12分)如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.26.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?
参考答案一、选择题(每题4分,共48分)1、A【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),先表示出第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于a%的方程.【题目详解】解:当猪肉第一次提价时,其售价为;当猪肉第二次提价后,其售价为故选:.【题目点拨】本题考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.2、A【解题分析】试题分析:河堤横断面迎水坡AB的坡比是,即,∴∠BAC=30°,∴AB=2BC=2×5=10,故选A.考点:解直角三角形3、D【解题分析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4、A【解题分析】∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选A.5、D【分析】设点A的纵坐标为b,可得点B的坐标为(,b),同理可得点C的坐标为(b,b),D点坐标(,3b),E点坐标(,3b),可得的值.【题目详解】解:设点A的纵坐标为b,因为点B在的图象上,所以其横坐标满足=b,根据图象可知点B的坐标为(,b),同理可得点C的坐标为(,b),所以点D的横坐标为,因为点D在的图象上,故可得y==3b,所以点E的纵坐标为3b,因为点E在的图象上,=3b,因为点E在第一象限,可得E点坐标为(,3b),故DE==,AB=所以=故选D.【题目点拨】本题主要考查二次函数的图象与性质.6、B【分析】根据位似图形的定义:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形,这个点叫做位似中心,判断即可.【题目详解】解:由图可知,对应边AG与CE的延长线交于点B,∴点B为位似中心故选B.【题目点拨】此题考查的是找位似图形的位似中心,掌握位似图形的定义是解决此题的关键.7、B【分析】根据等量关系:2016年贫困人口×(1-下降率=2018年贫困人口,把相关数值代入即可.【题目详解】设这两年全省贫困人口的年平均下降率为,根据题意得:,故选:B.【题目点拨】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.8、C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【题目详解】∵,∴,∴,∴,∴,.故选C.【题目点拨】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.9、B【分析】根据已知双曲线上有一点,点纵和横坐标的积是4,的面积是它的二分之一,即为所求.【题目详解】解:∵双曲线上有一点,设A的坐标为(a,b),∴b=∴ab=4∴的面积==2故选:B.【题目点拨】本题考查了反比例函数的性质和三角形的面积,熟练掌握相关知识是解题的关键.10、B【分析】根据算术平方根、绝对值的非负性分别解得的值,再计算即可.【题目详解】故选:B.【题目点拨】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.11、C【分析】根据题意,利用勾股定理求出,,,,的纵坐标,得到各点坐标,找到规律即可解答.【题目详解】如图,连接、、,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,∴点的坐标为,故选:C【题目点拨】本题考查了一次函数图象上点的坐标特征,熟练运用勾股定理是解题的关键.12、A【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【题目详解】列表如下:
红
红
红
绿
绿
红
﹣﹣﹣
(红,红)
(红,红)
(绿,红)
(绿,绿)
红
(红,红)
﹣﹣﹣
(红,红)
(绿,红)
(绿,红)
红
(红,红)
(红,红)
﹣﹣﹣
(绿,红)
(绿,红)
绿
(红,绿)
(红,绿)
(红,绿)
﹣﹣﹣
(绿,绿)
绿
(红,绿)
(红,绿)
(红,绿)
(绿,绿)
﹣﹣﹣
∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴,故选A.二、填空题(每题4分,共24分)13、1.【题目详解】解:设圆锥的底面圆半径为r,根据题意得1πr=,解得r=1,即圆锥的底面圆半径为1cm.故答案为:1.【题目点拨】本题考查圆锥的计算,掌握公式正确计算是解题关键.14、1【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可【题目详解】解:∵摸到红球的概率为∴解得n=1.
故答案为:1.【题目点拨】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率15、【分析】先根据三角形相似求,再根据三角形内角和计算出的度数.【题目详解】解:如图:∵∠A=50°,,
∴∵,
∴
故答案为.【题目点拨】本题考查了相似三角形的性质:相似三角形的对应角相等.16、2.1.【分析】利用以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k得到位似比为,然后根据相似的性质计算AB的长.【题目详解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC与△DEF位似,原点O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案为2.1.【题目点拨】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.17、7【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【题目详解】解:∵,∴,∴,∴,∴;故答案为:7.【题目点拨】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.18、3.【题目详解】根据题意得:a:b=c:d,∵a=3cm,b=4cm,c=6cm,∴3:4=6:d,∴d=3cm.考点:3.比例线段;3.比例的性质.三、解答题(共78分)19、10%【分析】根据增长后的产量=增长前的产量(1+增长率),设增长率是x,则2012年的产量是6000(1+x)2,据此即可列方程,解出即可.【题目详解】解:设水稻每公顷产量的年平均增长率为x,依题意得6000(1+x)2=7260,解得:x1=0.1,x2=﹣2.1(舍去).答:水稻每公顷产量的年平均增长率为10%.【题目点拨】此题考查了一元二次方程的应用,解答本题的关键是利用增长率表示出2012年的产量是6000(1+x)2,然后得出方程.20、(1);(2).【分析】(1)先求出点F坐标,利用待定系数法求出反比例函数的表达式;(2)利用点F的的横坐标为4,点的纵坐标为3,分别求得用k表示的BF、AE长,继而求得CF、CE长,从而求得结论.【题目详解】(1)是的中点,,点的坐标为,将点的坐标为代入得:∴,∴反比例函数的表达式;(2)点的横坐标为4,代入,,,,点的纵坐标为3,代入,,即,,,所以.【题目点拨】此题是反比例函数与几何的综合题,主要考查了待定系数法,矩形的性质,锐角三角函数,掌握反比例函数的性质是解本题的关键.21、.【分析】找出a,b,c的值,代入求根公式即可求出解.【题目详解】解:这里a=2,b=3,c=﹣1,∵△=9+8=17,∴x=.考点:解一元二次方程-公式法.22、(1)1:3;(1)见解析;(3)5:3:1.【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【题目详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.23、【分析】根据相似三角形的判定定理可得△CAD∽△CBA,列出比例式即可求出AC.【题目详解】解:∵CD=4,BD=2,∴BC=CD+BD=6∵∠CAD=∠B,∠C=∠C∴△CAD∽△CBA∴∴解得:或(舍去)即.【题目点拨】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.24、(1);(2)详见解析;(3)2.0或者3.7【分析】(1)当x=2时,点C与点O重合,此时DE是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y=4时x的值即可;【题目详解】(1)当时,即是直径,可求得的面积为4.0,∴;(2)函数图象如图所示:(3)由图像可知,当时,或3.7【题目点拨】本题考查圆综合题,三角形的面积,函数图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.25、(1)详见解析;(2)图详见解析,12;(3).【分析】(1)如图1,延长EG交DC的延长线于点H,由“AAS”可证△CGH≌△BGE,可得GE=GH,由直角三角形的性质可得DG=EG=GH;
(2)通过证明△DEO∽△DBO,可得,可求DE=,由平行线分线段成比例可求EG=,GO=EG-EO=,由勾股定理可求BG=CG=,可得DE=AD,即点A与点E重合,可画出图形,由面积公式可求解;
(3)如图3,过点O作OF⊥BC,由旋转的性质和等腰三角形的性质可得GF=G'F,由平行线分线段成比例可求GF的长,由勾股定理可求解.【题目详解】证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,又∵BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS),∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文园地二-2022-2023学年三年级语文下册课时练分层作业(部编版)
- 榆林职业技术学院《三维动画制作》2023-2024学年第二学期期末试卷
- 广东省肇庆市本年度(2025)小学一年级数学统编版阶段练习(下学期)试卷及答案
- 外贸单证考试试题及答案
- 粤牌考试试题及答案
- 公务员送分面试题及答案
- 回民区幼儿教师考试试题及答案
- 初中地理《欧洲西部》教学设计第1课时-2024-2025学年湘教版地理七年级下册
- 运营入门考试试题及答案
- 汇编语言考试试题及答案
- 企业利他培训
- DB32-T 4569-2023 发泡陶瓷保温板 保温系统应用技术规程
- 2025云南烟草专卖局(公司)高校毕业生招聘90人(非定向)高频重点提升(共500题)附带答案详解
- 2025年职教高考对口升学 护理类 专业综合模拟卷(4)(四川适用)(原卷版)
- 酒业销售有限公司组织架构及岗位职责
- 农村街道电网改造合同范例
- 绿化 保洁合同范例
- 病理科危险品管理
- 零售店员工管理
- 《通信概论》课件 任务1 4G网络建设
- 业财融合视角下的国有企业财务管理转型升级
评论
0/150
提交评论