2024届江苏省无锡市锡山区(锡北片)数学九年级第一学期期末教学质量检测模拟试题含解析_第1页
2024届江苏省无锡市锡山区(锡北片)数学九年级第一学期期末教学质量检测模拟试题含解析_第2页
2024届江苏省无锡市锡山区(锡北片)数学九年级第一学期期末教学质量检测模拟试题含解析_第3页
2024届江苏省无锡市锡山区(锡北片)数学九年级第一学期期末教学质量检测模拟试题含解析_第4页
2024届江苏省无锡市锡山区(锡北片)数学九年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡市锡山区(锡北片)数学九年级第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,8,9的中位数是6C.从2000名学生中选出200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是22.已知=3,=5,且与的方向相反,用表示向量为()A. B. C. D.3.如图,中,,,,则的值是()A. B. C. D.4.如图,在平面直角坐标系中,菱形的边在轴的正半轴上,反比例函数的图象经过对角线的中点和顶点.若菱形的面积为12,则的值为().A.6 B.5 C.4 D.35.点P(﹣2,4)关于坐标原点对称的点的坐标为()A.(4,﹣2) B.(﹣4,2) C.(2,4) D.(2,﹣4)6.如图,点在上,,则的半径为()A.3 B.6 C. D.127.下列图形中,不是中心对称图形的是()A. B. C. D.8.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>09.已知一斜坡的坡比为,坡长为26米,那么坡高为()A.米 B.米 C.13米 D.米10.在△ABC中,点D、E分别在AB,AC上,DE∥BC,AD:DB=1:2,,则=(),A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,恰好能与△ACP′完全重合,如果AP=8,则PP′的长度为___________.12.方程的根是__________.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm1.14.投掷一枚材质均匀的正方体骰子,向上的一面出现的点数是2的倍数的概率等于_________.15.小明身高1.76米,小亮身高1.6米,同一时刻他们站在太阳光下,小明的影子长为1米,则小亮的影长是_____米.16.一元二次方程x2﹣2x=0的解是.17.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.18.抛物线的对称轴为直线______.三、解答题(共66分)19.(10分)新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2m,两棵树苗之间的距离CD为16m,在路灯的照射下,树苗CE的影长CG为1m,树苗DF的影长DH为3m,点G、C、B、D、H在一条直线上.求路灯AB的高度.20.(6分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.21.(6分)在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.22.(8分)如图,内接于,,是的弦,与相交于点,平分,过点作,分别交,的延长线于点、,连接.(1)求证:是的切线;(2)求证:.23.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由24.(8分)如图,在矩形ABCD中,CE⊥BD,AB=4,BC=3,P为BD上一个动点,以P为圆心,PB长半径作⊙P,⊙P交CE、BD、BC交于F、G、H(任意两点不重合),(1)半径BP的长度范围为;(2)连接BF并延长交CD于K,若tanKFC3,求BP;(3)连接GH,将劣弧HG沿着HG翻折交BD于点M,试探究是否为定值,若是求出该值,若不是,请说明理由.25.(10分)新区一中为了了解同学们课外阅读的情况,现对初三某班进行了“你最喜欢的课外书籍类别”的问卷调查.用“"表示小说类书籍,“”表示文学类书籍,“”表示传记类书籍,“”表示艺术类书籍.根据问卷调查统计资料绘制了如下两副不完整的统计图.请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了名学生,请补全条形统计图;(2)在接受问卷调查的学生中,喜欢“”的人中有2名是女生,喜欢“”的人中有2名是女生,现分别从喜欢这两类书籍的学生中各选1名进行读书心得交流,请用画树状图或列表法求出刚好选中2名是一男一女的概率.26.(10分)(1)计算.sin30°tan45°-cos30°tan30°+sin45°tan60°(2)已知cos(180°﹣a)=﹣cosa,请你根据给出的公式试求cos120°的值

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据调查方式对A进行判断;根据中位数的定义对B进行判断;根据样本容量的定义对C进行判断;通过方差公式计算可对D进行判断.【题目详解】A.了解飞行员视力的达标率应使用全面调查,所以A选项错误;B.数据3,6,6,7,8,9的中位数为6.5,所以B选项错误;C.从2000名学生中选出200名学生进行抽样调查,样本容量为200,所以C选项错误;D.一组数据1,2,3,4,5的方差是2,所以D选项正确故选D.【题目点拨】本题考查了方差,方差公式是:,也考查了统计的有关概念.2、D【分析】根据=3,=5,且与的方向相反,即可用表示向量.【题目详解】=3,=5,=,与的方向相反,故选D.【题目点拨】考查了平面向量的知识,注意平面向量的正负表示的是方向.3、C【分析】根据勾股定理求出a,然后根据正弦的定义计算即可.【题目详解】解:根据勾股定理可得a=∴故选C.【题目点拨】此题考查的是勾股定理和求锐角三角函数值,掌握利用勾股定理解直角三角形和正弦的定义是解决此题的关键.4、C【解题分析】首先设出A、C点的坐标,再根据菱形的性质可得D点坐标,再根据D点在反比例函数上,再结合面积等于12,解方程即可.【题目详解】解:设点的坐标为,点的坐标为,则,点的坐标为,∴,解得,,故选:C.【题目点拨】本题主要考查反比例函数和菱形的性质,关键在于菱形的对角线相互平分且垂直.5、D【解题分析】根据关于原点对称,则两点的横、纵坐标都是互为相反数,可得答案.【题目详解】点P(﹣2,4)关于坐标原点对称的点的坐标为(2,﹣4),故选D.【题目点拨】本题考查了关于原点对称的点的坐标,关于原点对称,则两点的横、纵坐标都是互为相反数.6、B【分析】连接OB、OC,如图,根据圆周角定理可得,进一步即可判断△OCB是等边三角形,进而可得答案.【题目详解】解:连接OB、OC,如图,则OB=OC,∵,∴,∴△OCB是等边三角形,∴OB=BC=6.故选:B.【题目点拨】本题考查了圆周角定理和等边三角形的判定和性质,属于基础题型,熟练掌握上述性质是解题关键.7、A【题目详解】解:根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选A.8、A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【题目详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.9、C【分析】根据坡比算出坡角,再根据坡角算出坡高即可.【题目详解】解:设坡角为∵坡度∴.∴.坡高=坡长.故选:C.【题目点拨】本题考查三角函数的应用,关键在于理解题意,利用三角函数求出坡角.10、A【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:1.【题目详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:1.故选:A.【题目点拨】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.二、填空题(每小题3分,共24分)11、【分析】通过旋转的性质可以得到,,,从而可以得到是等腰直角三角形,再根据勾股定理可以计算出的长度.【题目详解】解:根据旋转的性质得:,∴是等腰直角三角形,∴∴∴故答案为:.【题目点拨】本题主要考查了旋转的性质以及勾股定理的应用,其中根据旋转的性质推断出是等腰直角三角形是解题的关键.12、,【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【题目详解】解:x2=3xx2﹣3x=0即x(x﹣3)=0∴,故本题的答案是,.【题目点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.13、35π.【解题分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【题目详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm1.故答案是:35π.【题目点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、【解题分析】分析:利用概率公式:一般地,如果在一次试验中,有n种可能得结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=,即要求解.详解:∵骰子的六个面上分别刻有1到6的点数,点数为2的倍数的有3个,分别为2、4、6;∴掷得朝上一面的点数为2的倍数的概率为:.故答案为:.点睛:本题考查了概率公式的知识,解题的关键是利用概率=所求情况数与总数之比进行求解.15、【分析】利用同一时刻实际物体与影长的比值相等进而求出即可.【题目详解】设小亮的影长为xm,由题意可得:,解得:x=.故答案为:.【题目点拨】此题主要考查了相似三角形的应用,正确利用物体高度与影长的关系是解题关键.16、【分析】方程整理后,利用因式分解法求出解即可.【题目详解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故答案为x1=0,x1=1.17、4π【解题分析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【题目详解】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长=,故答案为4π.【题目点拨】本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.18、【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的对称轴.【题目详解】∵抛物线y=x2+8x+2=(x+1)2﹣11,∴该抛物线的对称轴是直线x=﹣1.故答案为:x=﹣1.【题目点拨】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共66分)19、10m【分析】设BC的长度为x,根据题意得出△GCE∽△GBA,△HDF∽△HBA,进而利用相似三角形的性质列出关于x的方程.【题目详解】解:设BC的长度为xm由题意可知CE∥AB∥DF∵CE∥AB∴△GCE∽△GBA,△HDF∽△HBA∴,即==,即=∴=∴x=4∴AB=10答:路灯AB的高度为10m.【题目点拨】此题主要考查了相似三角形的应用,得出△GCE∽△GBA,△HDF∽△HBA是解题关键.20、(1)水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8);(2)为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内;(3)扩建改造后喷水池水柱的最大高度为米.【解题分析】分析:(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.详解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+.∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+,∴扩建改造后喷水池水柱的最大高度为米.点睛:本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.21、2.6cm【分析】先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.【题目详解】解:过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.【题目点拨】本题考查了角平分线的性质定理,属于简单题,正确作出辅助线是解题关键.22、(1)详见解析;(2)详见解析.【分析】(1)根据圆的对称性即可求出答案;(2)先证明△BCD∽△BDF,利用相似三角形的性质可知:,利用BC=AC即可求证=AC•BF;【题目详解】解:(1)∵,平分,∴,,∴是圆的直径∵AB∥EF,∴,∵是圆的半径,∴是的切线;(2)∵,∴,∴,∴,∴,∵,∴.【题目点拨】本题主要考查了圆周角定理,切线的判定与性质,相似三角形的判定与性质,掌握圆周角定理,切线的判定与性质,相似三角形的判定与性质是解题的关键.23、(1)w=-10x2+700x-10000;(2)即销售单价为35元时,该文具每天的销售利润最大;(3)A方案利润更高.【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【题目详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高24、(1);(2)BP=1;(3)【分析】(1)当点G和点E重合,当点G和点D重合两种临界状态,分别求出BP的值,因为任意点都不重合,所以BP在两者之间即可得出答案;(2)∠KFC和∠BFE是对顶角,得到,得出EF的值,再根据△BEF∽△FEG,求出EG的值,进而可求出BP的值;(3)设圆的半径,利用三角函数表示出PO,GO的值,看用面积法求出,在中由勾股定理得出MQ的值,进而可求出PM的值即可得出答案.【题目详解】(1)当G点与E点重合时,BG=BE,如图所示:∵四边形ABCD是矩形,AB=4,BC=3,∴BD=5,∵CE⊥BD,∴,∴,在△BEC中,由勾股定理得:,∴,当点G和点D重合时,如图所示:∵△BCD是直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论