2024届辽宁省沈阳市皇姑区第三十三中学九年级数学第一学期期末学业质量监测试题含解析_第1页
2024届辽宁省沈阳市皇姑区第三十三中学九年级数学第一学期期末学业质量监测试题含解析_第2页
2024届辽宁省沈阳市皇姑区第三十三中学九年级数学第一学期期末学业质量监测试题含解析_第3页
2024届辽宁省沈阳市皇姑区第三十三中学九年级数学第一学期期末学业质量监测试题含解析_第4页
2024届辽宁省沈阳市皇姑区第三十三中学九年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省沈阳市皇姑区第三十三中学九年级数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于反比例函数,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)2.点A(-2,1)关于原点对称的点A'的坐标是()A.(2,1) B.(-2,-1) C.(-1,2) D.(2,-1)3.如图,矩形的对角线交于点,已知,,下列结论错误的是()A. B. C. D.4.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x-2x+d=0有实数根,则点P()A.在⊙O的内部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O内部5.按下面的程序计算:若开始输入的值为正整数,最后输出的结果为,则开始输入的值可以为()A. B. C. D.6.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上 B.点M在⊙C内 C.点M在⊙C外 D.点M不在⊙C内7.已知二次函数的图象与轴有两个不同的交点,其横坐标分别为若且则()A. B. C. D.8.一个圆锥的底面直径是8cm,母线长为9cm,则圆锥的全面积为()A.36πcm2 B.52πcm2 C.72πcm2 D.136πcm29.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为()A.π B.π C.π D.π10.如图,是的直径,是的弦,已知,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.560.600.520.520.490.510.5012.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.13.已知x1,x2是关于x的方程x2﹣kx+3=0的两根,且满足x1+x2﹣x1x2=4,则k的值为_____.14.抛物线的对称轴是________.15.如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为_____.16.已知一次函数与反比例函数的图象交于点,则________.17.绕着A点旋转后得到,若,,则旋转角等于_____.18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.三、解答题(共66分)19.(10分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.20.(6分)在菱形中,,延长至点,延长至点,使,连结,,延长交于点.(1)求证:;(2)求的度数.21.(6分)利川市南门大桥是上世纪90年代修建的一座石拱桥,其主桥孔的横截面是一条抛物线的一部分,2019年在维修时,施工队测得主桥孔最高点到水平线的高度为.宽度为.如图所示,现以点为原点,所在直线为轴建立平面直角坐标系.(1)直接写出点及抛物线顶点的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在主桥孔内搭建矩形“脚手架”,使点在抛物线上,点在水平线上,为了筹备材料,需求出“脚手架”三根钢管的长度之和的最大值是多少?请你帮施工队计算.22.(8分)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.23.(8分)经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.24.(8分)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和1.利用画树状图或列表求下列事件的概率.(1)从两个口袋中各随机取出1个小球,恰好两个都是奇数;(2)若丙口袋中装有2个相同的小球,它们分别写有数字6和7,从三个口袋中各随机取出一个小球,恰好三个都是奇数.25.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?26.(10分)用配方法解方程:

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【题目详解】A.k=2>0,则双曲线的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入得y=2,则点(1,2)在的图象上,所以D选项的说法正确.故选C.【题目点拨】本题考查了反比例函数的性质:反比例函数(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.2、D【解题分析】根据两个点关于原点对称时,它们的横纵坐标符号相反,即可求解.【题目详解】解:点A(-2,1)关于原点对称的点A'的坐标是(2,-1).

故选:D.【题目点拨】本题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.3、B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【题目详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A选项正确;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B选项错误;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D选项正确.故选:B.【题目点拨】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.4、D【分析】先根据条件x

2

-2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【题目详解】解:∵关于x的方程x

2

-2x+d=0有实根,∴根的判别式△=(-2)

2

-4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【题目点拨】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.5、B【分析】由3x+1=22,解得x=7,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足3x+1=7,最后输出的结果也为22,可解得x=2即可完成解答.【题目详解】解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数7,当两次后输出22时,3x+1=7,解得:x=2;故答案为B.【题目点拨】本题考查了一元一次方程的应用,根据程序框图列出方程和理解循环结构是解答本题的关键.6、A【解题分析】根据题意可求得CM的长,再根据点和圆的位置关系判断即可.【题目详解】如图,∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选A.【题目点拨】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.7、C【分析】首先根据二次函数开口向下与轴有两个不同的交点,得出,然后再由对称轴即可判定.【题目详解】由已知,得二次函数开口向下,与轴有两个不同的交点,∴∵且∴其对称轴∴故答案为C.【题目点拨】此题主要考查二次函数图象的性质,熟练掌握,即可解题.8、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算出圆锥的侧面积,然后计算侧面积与底面积的和.【题目详解】解:圆锥的全面积=π×42+×2π×4×9=52π(cm2).故选:B.【题目点拨】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9、A【分析】连接OE,由菱形的性质得出∠D=∠B=70°,AD=AB=3,得出OA=OD=1.5,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.【题目详解】连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=70°,AD=AB=3,∴OA=OD=1.5,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的长=.故选:A.【题目点拨】此题考查菱形的性质、弧长计算,根据菱形得到需要的边长及角度即可代入公式计算弧长.10、C【分析】根据圆周角定理即可解决问题.【题目详解】∵,∴.故选:C.【题目点拨】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每小题3分,共24分)11、0.1【解题分析】利用频率的计算公式进行计算即可.【题目详解】解:由题意得,这名球员投篮的次数为1110次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.1.故答案为0.1.【题目点拨】本题考查利用频率估计概率,难度不大.12、.【解题分析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.13、2【分析】根据两根关系列出等式,再代入第二个代数式计算即可.【题目详解】∵x1、x2是方程x2﹣kx+1=0的两个根,∴x1+x2=k,x1x2=1.∵x1+x2﹣x1x2=k﹣1=4,∴k=2.故答案为:2.【题目点拨】本题考查一元二次方程的两根关系,关键在于熟练掌握基础知识,代入计算.14、【分析】根据二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=−计算.【题目详解】抛物线y=2x2+24x−7的对称轴是:x=−=−1,故答案为:x=−1.【题目点拨】本题考查的是二次函数的性质,掌握二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=−是解题的关键.15、(4,)【分析】先求得F的坐标,然后根据等腰直角三角形的性质得出直线OA的解析式为y=x,根据反比例函数的对称性得出F关于直线OA的对称点是D点,即可求得D点的坐标.【题目详解】∵OC=AC=4,AC交反比例函数y=的图象于点F,∴F的纵坐标为4,代入y=求得x=,∴F(,4),∵等腰直角三角形AOC中,∠AOC=45°,∴直线OA的解析式为y=x,∴F关于直线OA的对称点是D点,∴点D的坐标为(4,),故答案为:(4,).【题目点拨】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质,反比例函数的对称性是解题的关键.16、1【分析】先把P(a−2,3)代入y=2x−3,求得P的坐标,然后根据待定系数法即可求得.【题目详解】∵一次函数y=2x−3经过点P(a−2,3),∴3=2(a−2)−3,解得a=5,∴P(3,3),∵点P在反比例函数的图象上,∴k=3×3=1,故答案为1.【题目点拨】本题考查了一次函数和反比例函数的交点问题,求得交点坐标是解题的关键.17、50°或210°【分析】首先根据题意作图,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【题目详解】解:∵∠BAC′=130°,∠BAC=80°,

∴如图1,∠CAC′=∠BAC′-∠BAC=50°,

如图2,∠CAC′=∠BAC′+∠BAC=210°.

∴旋转角等于50°或210°.

故答案为:50°或210°.【题目点拨】本题考查了旋转的性质.注意掌握数形结合思想与分类讨论思想的应用.18、3:2【解题分析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为:3:2.三、解答题(共66分)19、(1)0.1;(2)小颖的说法是错误的,理由见解析(3)列表见详解;【分析】(1)根据频率等于频数除以总数,即可分别求出“3点朝上”的频率和“5点朝上”的频率.(2)频率不等于概率,只能估算概率,故小颖的说法不对,事件发生具有随机性,故得知小红的说法也不对.(3)列表,找出点数之和是3的倍数的结果,除以总的结果,即可解决.【题目详解】解:(1)“3点朝上”的频率:6÷60=0.1“5点朝上”的频率:20÷60=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明5点朝上的概率最大,频率不等于概率;小红的说法是错误的,因为事件发生具有随机性,故“点朝上”的次数不一定是100次.(3)列表如下:共有36种情况,点数之和为3的倍数的情况有12种.故P(点数之和为3的倍数)==.【题目点拨】本题主要考查了频率的公式、频率与概率的关系以及列表法和树状图法求概率,能够熟练其概念以及准确的列表是解决本题的关键.20、(1)见详解;(2)60°【分析】(1)先判断出△ABC是等边三角形,由等边三角形的性质可得BC=AC,∠ACB=∠ABC,再求出CE=BF,然后利用“边角边”证明即可;

(2)由△ACE≌△CBF,根据全等三角形对应角相等可得∠E=∠F,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CGE=∠ABC即可.【题目详解】(1)证明:∵菱形,,∴是等边三角形,∴,,∵,∴,即,在和中,∵,∴.(2)解:∵,∴,∵,∴,∴,∵,∴.【题目点拨】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质等知识;熟记性质并确定出三角形全等的条件是解题的关键21、(1);(2),;(3)三根钢管的长度之和的最大值是.【分析】(1)根据题意,即可写出点及抛物线顶点的坐标;(2)抛物线过原点,故设抛物线为,将M和P的坐标代入即可求出抛物线的解析式;(3)设,分别用含x的式子表示出的长度,设“脚手架”三根钢管的长度之和为,即可求出与x的函数关系式,最后利用二次函数求最值即可.【题目详解】解:(1)由题意可知:抛物线顶点;(2)抛物线过原点,故设抛物线为,由在抛物线上有,解得,所以抛物线的函数解析式为,由图象可知;(3)设,根据点A在抛物线上和矩形的性质可得,∵点A和点D关于抛物线的对称轴对称∴点D的坐标为(60-x,y)∴设“脚手架”三根钢管的长度之和为,则,即当时,,所以,三根钢管的长度之和的最大值是.【题目点拨】此题考查的是二次函数的应用,掌握用待定系数法求二次函数的解析式和利用二次函数求最值是解决此题的关键.22、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【题目详解】解:(1)因为有,,种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,23、(1)当1≤x<50时,y=﹣2x2+180x+2000,当50≤x≤90时,y=﹣120x+12000;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)该商品在销售过程中,共41天每天销售利润不低于4800元.【解题分析】试题分析:(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.试题解析:(1)当1≤x<50时,y=(x+40﹣30)(200-2x)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)(200-2x)=﹣120x+12000;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论