《直线与圆的位置关系》_第1页
《直线与圆的位置关系》_第2页
《直线与圆的位置关系》_第3页
《直线与圆的位置关系》_第4页
《直线与圆的位置关系》_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页码页码页/总共NUMPAGES总页数总页数页《直线与圆的位置关系》教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。345教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。345教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。345教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。345教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。345教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。345教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。345教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。345教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。二、教法与学法分析教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固教学环节教学过程教师活动学生活动设计意图(一)创设情景,孕育新知,引入新课1、微机演示唐朝诗人王维《使至塞上》:单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论