版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.离散型随机变量(一).一.随机事件:在一定条件下可能发生也可能不发生的事件
二、随机事件的概率一般地,在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)知识回顾.几点说明:(1)求一个事件的概率的基本方法是通过大量的重复试验(2)概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地作为这个事件的概率(3)必然事件的概率为1,不可能事件的概率为0,因此.一个试验如果满足下述条件:(1)试验可以在相同的条件下重复进行;(2)试验的所有结果是明确的且不止一个;(3)每次试验总是出现这些结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果。这样的试验就叫做一个随机试验,也简称试验。三;随机试验.古典概型特点:
1、实验的样本空间只包括有限个元素;
2、实验中每个基本事件发生的可能性相同;
具有以上两个特点的实验是大量存在的,这种实验叫等可能概型,也叫古典概型。
求古典概型的概率的基本步骤:
(1)算出所有基本事件的个数n;
(2)求出事件A包含的所有基本事件数m;
(3)代入公式P(A)=m/n,求出P(A)。
.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例.则称这样的概率模型为几何概率模型(geometricmodelsofprobability),简称几何概型.P(A)=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).几何概型的特点试验中所有可能出现的结果(基本事件)有无限多个;每个基本事件出现的可能性相等古典概型与几何概型的区别相同:两者基本事件发生的可能性都是相等的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个想一想:.那么,如何用数学语言来清楚地刻画每个随机现象的规律呢?离散型随机变量.例(1)某人射击一次,可能出现哪些结果?可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果(环数)可以由0,1,……10这11个数表示;.
其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果(次品数)可以由0,1,2,3,4这5个数表示(2)某次产品检验,在含有4件次品的100件产品中任意抽取4件,那么其中含有的多少件次品?.一、随机变量的概念在随机试验中,我们确定一个对应关系,使得每一个试验结果都用一个确定的数字表示,在这种对应关系下,数字随着试验结果的变化而变化。我们把这种变量称为随机变量.随机变量常用字母X,Y,z等表示.或ξ,η.随机变量:随着试验结果变化而变化的变量称为随机变量。常用字母…表示。注:(1)可以用数表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不可能确定取何值。.随机变量和函数有没有类似的地方?若有,你认为它们有哪些类似的地方?.探究随机变量与函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数。在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域。我们把随机变量的取值范围叫做随机变量的值域。.在上面的射击、产品检验等例子中,对于随机变量可能取的值,我们可以一一列出,这样的随机变量叫做离散型随机变量..电灯泡的使用寿命X是离散型随机变量吗?连续型随机变量..如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量.例如:某林场树木最高达30米,则此林场树木的高度是一个连续型随机变量。.抛掷一枚骰子,设得到的点数为ξ,则ξ可能取的值有:ξ123456p此表从概率的角度指出了随机变量在随机试验中取值的分布情况,称为随机变量ξ的概率分布.
离散型随机变量的分布列1,2,3,4,5,6.ξ取每一个xi(i=1,2,……)的概率P(ξ=xi)=Pi①,则称①为随机变量ξ的概率分布列,简称为ξ的分布列.
离散型随机变量的分布列一般地,设离散型随机变量ξ可能取的值为:x1,x2,……,xi,……..ξX1X2…Xi…PP1P2…Pi…也可将①用表的形式来表示上表称为随机变量ξ的概率分布表,它和①都叫做随机变量ξ的概率分布..2.分布列的构成:⑴列出随机变量ξ的所有取值;⑵给出ξ的每一个取值的概率.3.分布列的性质:.X01P1/21/2例1(1)掷一枚质地均匀的硬币一次,用X表示掷得正面的次数,则随机变量X的可能取值有那些?.例1(2)一实验箱中装有标号为1,2,3,3,4的五只白鼠,从中任取一只,记取到的白鼠的标号为Y的可能取值有那些?Y1234P1/51/52/51/5.3.抛掷一个骰子,设得到的点数为ξ,则ξ的取值情况如何?ξ取各个值的概率分别是什么?ξp2134564.连续抛掷两个骰子,得到的点数之和为ξ,则
ξ取哪些值?各个对应的概率分别是什么?ξP42356789101112.例2.从装有6只白球和4只红球的口袋中任取一只球,用X表示“取到的白球个数”,即X01P2/53/5求随机变量X的概率分布.特殊的分布:“0-1”分布(两点分布):特点:随机变量X的取值只有两种可能记法:X~0-1分布或X~两点分布“~”表示服从.例3同时掷两颗质地均匀的骰子,观察朝上一面出现的点数,求两颗骰子中出现的最大点数X的概率分布,并求X大于2小于5的概率p(2<x<5)X123456P1/363/365/367/369/3611/36.练习.某一射手射击所得环数ξ的分布列如下:0.22100.2990.280.090.060.040.02P87654ξ求(1)P(ξ≥7);(2)P(5≤ξ≤8);(3)P(ξ≥2)..例.设随机变量ξ的分布列为,则a的为
.例.设随机变量ξ的分布列如下:P4321ξ则a的值为
..如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.1.随机变量课堂小结.1.随机变量对于随机变量可能取的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度餐饮泔水回收与环保设施投资合同3篇
- 二零二五年矿山土地及资源使用权转让合同3篇
- 二零二五版白糖进口许可证申请代理服务合同下载2篇
- 二零二五年度驾驶员押运员安全责任及培训合同3篇
- 二零二五版企事业单位节能环保办公电脑采购合同2篇
- 二零二五版电子商务平台借款及库存商品质押合同3篇
- 二零二五年纺织原料市场调研与分析合同2篇
- 小区下水管网清理疏通承包合同(2篇)
- 二零二五版房产买卖合同含抵押权转移及贷款利率协商协议0183篇
- 2025年度农业科技推广财产赠与合同3篇
- 高中英语名词性从句讲解
- 计算机二级wps题库及答案
- 整套课件:工业催化
- 爆破安全管理知识培训
- 旅游地理学教案
- 煤矸石综合利用途径课件
- 企业信息公示联络员备案申请表
- 卫生部关于发布《综合医院组织编制原则试行草案》的通知((78)卫医字第1689号)
- 挑战杯生命科学获奖作品范例
- 医院岗位设置与人员编制标准
- 部编版八上语文古代诗歌鉴赏对比阅读(含答案)
评论
0/150
提交评论