




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届成都市青羊区九年级数学第一学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30° B.35° C.40° D.50°2.如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为()A.9 B.12 C.18 D.243.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥34.如图,已知抛物线的对称轴过点且平行于y轴,若点在抛物线上,则下列4个结论:①;②;③;④.其中正确结论的个数是()A.1 B.2 C.3 D.45.一元二次方程x2-x=0的根是()A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-16.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+57.抛物线y=x2-2x+m与x轴有两个交点,则m的取值范围为()A.m>1 B.m≥1 C.m<1 D.m≤18.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④9.二次函数y=x2+4x+3,当0≤x≤时,y的最大值为()A.3 B.7 C. D.10.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5° B.15° C.20° D.22.5°11.一元二次方程的一个根为,则的值为()A.1 B.2 C.3 D.412.要使二次根式有意义,则的取值范围是()A. B.且 C. D.且二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,∠ABC=90°,对角线AC、BD交于点O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.14.如果四条线段m,n,x,y成比例,若m=2,n=8,y=20,则线段x的长为________.15.若是方程的一个根,则代数式的值等于______.16.若,则的值是______.17.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了__________元.18.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是________cm.三、解答题(共78分)19.(8分)抛物线与轴交于两点(点在点的左侧),且,,与轴交于点,点的坐标为(0,-2),连接,以为边,点为对称中心作菱形.点是轴上的一个动点,设点的坐标为,过点作轴的垂线交抛物线与点,交于点.(1)求抛物线的解析式;(2)轴上是否存在一点,使三角形为等腰三角形,若存在,请直接写出点的坐标;若不存在,请说明理由;(3)当点在线段上运动时,试探究为何值时,四边形是平行四边形?请说明理由.20.(8分)解方程:x2+2x﹣1=1.21.(8分)某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.22.(10分)专卖店销售一种陈醋礼盒,成本价为每盒40元.如果按每盒50元销售,每月可售出500盒;若销售单价每上涨1元,每月的销售量就减少10盒.设此种礼盒每盒的售价为x元(50<x<75),专卖店每月销售此种礼盒获得的利润为y元.(1)写出y与x之间的函数关系式;(2)专卖店计划下月销售此种礼盒获得8000元的利润,每盒的售价应为多少元?(3)专卖店每月销售此种礼盒的利润能达到10000元吗?说明理由.23.(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=1.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.24.(10分)如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点、重合).(1)当圆心在内部,∠ABO+∠ADO=70°时,求∠BOD的度数;(2)当点A在优弧BD上运动,四边形为平行四边形时,探究与的数量关系.25.(12分)某班数学兴趣小组在学习二次根式时进行了如下题目的探索研究:(1)填空:;;(2)观察第(1)题的计算结果回答:一定等于;(3)根据(1)、(2)的计算结果进行分析总结的规律,计算:26.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据圆周角与圆心角的关键即可解答.【题目详解】∵∠AOC=80°,∴.故选:C.【题目点拨】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、D【分析】根据位似图形的性质,再结合点A与点的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【题目详解】解:∵△ABC与△是以坐标原点O为位似中心的位似图形,且A为的中心,∴△ABC与△的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△的面积等于4倍的△ABC的面积,即.故答案为:D.【题目点拨】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3、A【解题分析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.4、B【分析】根据二次函数的图象与性质对各个结论进行判断,即可求出答案.【题目详解】解:∵抛物线的对称轴过点,∴抛物线的对称轴为,即,可得由图象可知,,则,∴,①正确;∵图象与x轴有两个交点,∴,即,②错误;∵抛物线的顶点在x轴的下方,∴当x=1时,,③错误;∵点在抛物线上,即是抛物线与x轴的交点,由对称轴可得,抛物线与x轴的另一个交点为,故当x=−2时,,④正确;综上所述:①④正确,故选:B.【题目点拨】本题主要考查了二次函数图象与系数的关系、抛物线与x轴的交点,解题的关键是逐一分析每条结论是否正确.解决该题型题目时,熟练掌握二次函数的图象与性质是关键.5、C【分析】利用因式分解法解方程即可解答.【题目详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【题目点拨】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.6、A【解题分析】结合向左平移的法则,即可得到答案.【题目详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【题目点拨】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.7、C【分析】抛物线与轴有两个交点,则,从而求出的取值范围.【题目详解】解:∵抛物线与轴有两个交点∴∴∴故选:C【题目点拨】本题考查了抛物线与轴的交点问题,注:①抛物线与轴有两个交点,则;②抛物线与轴无交点,则;③抛物线与轴有一个交点,则.8、B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;如果△PMN为等边三角形,求得∠MPN=60°,推出△CPM是等边三角形,得到△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【题目详解】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,∴,②正确;③∵∠ABC=60°,∴∠BPN=60°,如果△PMN为等边三角形,∴∠MPN=60°,∴∠CPM=60°,∴△CPM是等边三角形,∴∠ACB=60°,则△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,故④正确.故选:B.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质.9、D【解题分析】利用配方法把二次函数解析式化为顶点式,根据二次函数的性质解答.【题目详解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,则当x>﹣2时,y随x的增大而增大,∴当x=时,y的最大值为()2+4×+3=,故选:D.【题目点拨】本题考查配方法把二次函数解析式化为顶点式根据二次函数性质解答的运用10、B【题目详解】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°故选:B11、B【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【题目详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,
∴22-3×2+k=0,
解得,k=2,
故选:B.【题目点拨】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.12、D【分析】根据二次根式有意义:被开方数为非负数,分式有意义:分母不为零,可得出x的取值.【题目详解】解:要使二次根式有意义,则,且,故的取值范围是:且.故选:D.【题目点拨】此题考查了二次根式及分式有意义的条件,属于基础题,解答本题的关键是掌握:二次根式有意义:被开方数为非负数,分式有意义:分母不为零,难度一般.二、填空题(每题4分,共24分)13、【分析】过点A作AE⊥BD,由AAS得△AOE≌△COD,从而得CD=AE=3,由勾股定理得DB=4,易证△ABE∽△BCD,得,进而即可求解.【题目详解】过点A作AE⊥BD,∵CD⊥BD,AE⊥BD,∴∠CDB=∠AED=90°,CO=AO,∠COD=∠AOE,∴△AOE≌△COD(AAS)∴CD=AE=3,∵∠CDB=90°,BC=5,CD=3,∴DB==4,∵∠ABC=∠AEB=90°,∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,∴∠EAB=∠CBD,又∵∠CDB=∠AEB=90°,∴△ABE∽△BCD,∴,∴,∴AB=.故答案为:.【题目点拨】本题主要考查相似三角形的判定和性质定理,全等三角形的判定和性质以及勾股定理,添加辅助线构造全等三角形,是解题的关键.14、1【题目详解】解:根据题意可知m:n=x:y,即2:8=x:20,解得:x=1.故答案为:115、1【分析】把代入已知方程,求得,然后得的值即可.【题目详解】解:把代入已知方程得,∴,故答案为1.【题目点拨】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系.16、【分析】根据合比性质:,可得答案.【题目详解】由合比性质,得,故答案为:.【题目点拨】本题考查了比例的性质,利用合比性质是解题关键.17、257【分析】根据获奖人数依次增加,获得二三等奖的人数之和与二等奖奖品的单价相同,以及二等奖奖品单价为5的倍数,可知二等奖的单价为10或15,分别讨论即可得出答案.【题目详解】设二等奖人数为m,三等奖人数为n,二等奖单价为a,三等奖单价为b,根据题意列表分析如下:一等奖二等奖三等奖去年获奖人数3mn奖品单价34ab今年获奖人数3+1=4m+2n+3奖品单价34+6=40a+3b+2∵今年购买奖品的总费用比去年增加了159元∴整理得∵,,为5的倍数∴的值为10或15当时,,代入得,解得不符合题意,舍去;当时,有3种情况:①,,代入得,解得,符合题意此时去年购买奖品一共花费元②,,代入得,解得,不符合题意,舍去③,,代入得,解得,不符合题意,舍去综上可得,去年购买奖品一共花费257元故答案为:257.【题目点拨】本题考查了方程与不等式的综合应用,难度较大,根据题意推出的取值,然后分类讨论是解题的关键.18、1【分析】根据垂径定理与勾股定理即可求出答案.【题目详解】解:连接OC,设OE=3x,EB=2x,
∴OB=OC=5x,
∵AB=20cm
∴10x=20
∴x=2cm,∴OC=10cm,OE=6cm,
∴由勾股定理可知:CE=cm,
∴CD=2CE=1cm,
故答案为:1.【题目点拨】本题考查垂径定理的应用,解题的关键是根据勾股定理求出CE的长度,本题属于基础题型.三、解答题(共78分)19、(1)y=x2-x-2;(2)P的坐标为(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)m=1时.【分析】(1)根据题意,可设抛物线表达式为,再将点C坐标代入即可;(2)设点P的坐标为(m,0),表达出PB2、PC2、BC2,再进行分类讨论即可;(3)根据“当MQ=DC时,四边形CQMD为平行四边形”,用m的代数式表达出MQ=DC求解即可.【题目详解】解:(1)∵抛物线与x轴交于A(-1,0),B(4,0)两点,
故可设抛物线的表达式为:,将C(0,-2)代入得:-4a=-2,解得:a=∴抛物线的解析式为:y=x2-x-2(2)设点P的坐标为(m,0),
则PB2=(m-4)2,PC2=m2+4,BC2=20,
①当PB=PC时,(m-4)2=m2+4,解得:m=②当PB=BC时,同理可得:m=4±2③当PC=BC时,同理可得:m=±4(舍去4),故点P的坐标为(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)∵C(0,-2)
∴由菱形的对称性可知,点D的坐标为(0,2),
设直线BD的解析式为y=kx+2,又B(4,0)
解得k=-1,
∴直线BD的解析式为y=-x+2;
则点M的坐标为(m,-m+2),点Q的坐标为(m,m2-m-2)当MQ=DC时,四边形CQMD为平行四边形∴-m+2-(m2-m-2)=2-(-2)解得m=0(舍去)m=1故当m=1时,四边形CQMD为平行四边形.【题目点拨】本题考查了二次函数与几何的综合应用,难度适中,解题的关键是灵活应用二次函数的性质与三角形、四边形的判定及性质.20、.【分析】根据公式法解一元二次方程,即可得出结论.【题目详解】解:,,,,方程有两个不相等的实数根,,即,故答案为.【题目点拨】本题考查了公式法解一元二次方程是常数且.解题的关键是根据系数的特点选用适合的解题方法,选用公式法解题时,判别式,(1)当时,一元二次方程有两个不相等的实数根;(2)当时,一元二次方程有两个相等的实数根;(3)当时,一元二次方程没有实数根.21、.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果.【题目详解】解:画树状图如下:共有9种等可能的结果数,其中两次摸出的球的颜色相同的结果数为3,所以过关的概率是=.【题目点拨】本题的考点是树状图法.方法是根据题意画出树状图,由树状图得出答案.22、(1)y=-11x2+1411x-41111;(2)销售价应定为61元/盒.(3)不可能达到11111元.理由见解析【分析】(1)根据题意用x表示销售商品的件数,则利润等于单价利润乘以件数.(2)根据此种礼盒获得8111元的利润列出一元二次方程求解,再进行取舍即可;(3)得出相应的一元二次方程,判断出所列方程是否有解即可.【题目详解】解:(1)y=(x-41)[511-11(x-51)],整理,得y=-11x2+1411x-41111;(2)由题意得y=8111,即-11x2+1411x-41111=8111,化简,得x2-141x+4811=1.解得,x1=61,x2=81(不符合题意,舍去).∴x=61.答:销售价应定为61元/盒.(3)不可能达到11111元.理由如下:当y=11111时,得-11x2+1411x-41111=11111.化简,得x2-141x+5111=1.△=(-141)2-4×1×5111<1,原方程无实数解.∴该专卖店每月销售此种礼盒的利润不可能达到11111元.【题目点拨】解决问题的关键是读懂题意,找到所求的量的等量关系.注意售价、进价、利润、销售量之间的数量关系.23、(1)点C的坐标为(2,3+2);(2)OA=3;(3)OC的最大值为8,cos∠OAD=.【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE=,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;(2)先求出S△DCM=1,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD=y,据此知x2+y2=31,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=31求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得,据此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.【题目详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=1,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=31,xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=31得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴,即,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA=,∴cos∠OAD=.【题目点拨】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.24、(1)140°;(2)当点A在优弧BD上运动,四边形为平行四边形时,点O在∠BAD内部时,+=60°;点O在∠BAD外部时,|-|=60°.【解题分析】(1)连接OA,如图1,根据等腰三角形的性质得∠OAB=∠ABO,∠OAD=∠ADO,则∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根据圆周角定理易得∠BOD=2∠BAD=140°;(2)分点O在∠BAD内部和外部两种情形分类讨论:①当点O在∠BAD内部时,首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据平行四边形的性质,求出∠OBC、∠ODC的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②当点O在∠BAD外部时:Ⅰ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠OBA=∠ODA+60°即可.Ⅱ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠ODA=∠OBA+60°即可.【题目详解】(1)连接OA,如图1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如图2,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如图3,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA-∠ODA=60°.Ⅱ、如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年基金从业资格证之基金法律法规、职业道德与业务规范题库检测试卷B卷附答案
- 2025独家代理合同范本版
- 关于铝合金合同样本
- 2025工程承包合同协议模板
- 南平钢结构安装施工方案
- 仓库代管物资合同样本
- 农田整治施工合同标准文本
- 沙石地基处理方案范本
- 个人装修吊顶合同样本
- 组织架构重构方案范本
- 2024年陕西榆林能源集团招聘笔试参考题库含答案解析
- 粘碳碳纤维布加固施工方案
- 重症医学科健康宣教手册
- 山东省独生子女父母退休一次性养老补助申请表
- 2023年山东青岛市初中学业水平考试地理试卷真题(答案详解)
- 共同费用分割单表
- 酒店历史文化主题客房设计
- 临床输血规范
- 护理实习生岗前培训课件
- 早期大肠癌的诊断与内镜下治疗课件
- 艾宾浩斯记忆表格遗忘曲线
评论
0/150
提交评论