版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省滁州市凤阳县数学九年级第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是()A.4cm B.8cm C.16cm D.32cm2.二位同学在研究函数(为实数,且)时,甲发现当0<<1时,函数图像的顶点在第四象限;乙发现方程必有两个不相等的实数根,则()A.甲、乙的结论都错误 B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确 D.甲的结论错误,乙的结论正确3.如图所示的图案是由下列哪个图形旋转得到的()A. B. C. D.4.如图,从一块半径为的圆形铁皮上剪出一个圆心角是的扇形,则此扇形围成的圆锥的侧面积为()A. B. C. D.5.根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为()A. B. C. D.6.数据1,3,3,4,5的众数和中位数分别为()A.3和3 B.3和3.5 C.4和4 D.5和3.57.下列光线所形成的投影不是中心投影的是()A.太阳光线 B.台灯的光线 C.手电筒的光线 D.路灯的光线8.已知反比例函数y=的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A. B. C. D.9.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x
…
-2
-1
0
1
2
…
y
…
0
4
6
6
4
…
观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x增大而增大.其中正确有()A.1个 B.2个 C.3个 D.4个10.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B.C. D.二、填空题(每小题3分,共24分)11.已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF12.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=______.13.如图所示,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转,得,则点的坐标为_________.14.一张直角三角形纸片,,,,点为边上的任一点,沿过点的直线折叠,使直角顶点落在斜边上的点处,当是直角三角形时,则的长为_____.15.若关于的一元二次方程有实数根,则的取值范围是_____.16.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______.17.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________.18.已知二次函数y=(x-2)2+3,当x_______________时,y三、解答题(共66分)19.(10分)解方程:x2-2x-3=020.(6分)如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.21.(6分)如图,点D是AC上一点,BE//AC,AE分别交BD、BC于点F、G,若∠1=∠2,线段BF、FG、FE之间有怎样的关系?请说明理由.22.(8分)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)请比较①摸出的2个球颜色相同②摸出的2个球中至少有1个白球,这两种情况哪个概率大,请说明理由23.(8分)在直角三角形中,,点为上的一点,以点为圆心,为半径的圆弧与相切于点,交于点,连接.(1)求证:平分;(2)若,求圆弧的半径;(3)在的情况下,若,求阴影部分的面积(结果保留和根号)24.(8分)已知关于x的一元二次方程(1)当m取何值时,这个方程有两个不相等的实根?(2)若方程的两根都是正数,求m的取值范围;(3)设是这个方程的两个实根,且,求m的值.25.(10分)文物探测队探测出某建筑物下面埋有文物,为了准确测出文物所在的深度,他们在文物上方建筑物的一侧地面上相距米的两处,用仪器测文物,探测线与地面的夹角分别是和,求该文物所在位置的深度(精确到米).26.(10分)如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)
参考答案一、选择题(每小题3分,共30分)1、C【分析】连接CE,先由三角形内角和定理求出∠B的度数,再由线段垂直平分线的性质及三角形外角的性质求出∠CEA的度数,由直角三角形中30°所对的直角边是斜边的一半即可解答.【题目详解】解:连接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴BE=CE,∴∠BCE=∠B=15°,∴∠AEC=∠BCE+∠B=30°,∵Rt△AEC中,AC=8cm,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故选:C.【题目点拨】此题考查的是垂直平分线的性质、等腰三角形的性质、三角形外角的性质和直角三角形的性质,掌握垂直平分线的性质、等边对等角、三角形外角的性质和30°所对的直角边是斜边的一半是解决此题的关键.2、D【分析】先根据函数的解析式可得顶点的横坐标,结合判断出横坐标可能取负值,从而判断甲不正确;再通过方程的根的判别式判断其根的情况,从而判断乙的说法.【题目详解】,原函数定为二次函数甲:顶点横坐标为,,所以甲不正确乙:原方程为,化简得:必有两个不相等的实数根,所以乙正确故选:D.【题目点拨】本题考查二次函数图象的性质、顶点坐标、一元二次方程的根的判别式,对于一般形式有:(1)当,方程有两个不相等的实数根;(2)当,方程有两个相等的实数根;(3)当,方程没有实数根.3、D【解题分析】由一个基本图案可以通过旋转等方法变换出一些复合图案.【题目详解】由图可得,如图所示的图案是由绕着一端旋转3次,每次旋转90°得到的,
故选:D.【题目点拨】此题考查旋转变换,解题关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.4、A【分析】连接OB、OC和BC,过点O作OD⊥BC于点D,然后根据同弧所对的圆周角是圆心角的一半、等边三角形判定和垂径定理可得∠BOC=2∠BAC=120°,△ABC为等边三角形,BC=2BD,然后根据锐角三角函数即可求出BD,从而求出BC和AB,然后根据扇形的面积公式计算即可.【题目详解】解:连接OB、OC和BC,过点O作OD⊥BC于点D由题意可得:OB=OC=20cm,∠BAC=60°,AB=AC∴∠BOC=2∠BAC=120°,△ABC为等边三角形,BC=2BD∴∠OBC=∠OCB=(180°-∠BOC)=30°,AB=AC=BC在Rt△OBD中,BD=OB·cos∠OBD=cm∴BC=2BD=cm∴AB=BC=cm∴圆锥的侧面积=S扇形BAC=故选A.【题目点拨】此题考查的是圆周角定理、垂径定理、等边三角形的判定及性质、锐角三角函数和求圆锥侧面积,掌握圆周角定理、垂径定理、等边三角形的判定及性质、锐角三角函数和扇形的面积公式是解决此题的关键.5、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】亿=3.0924×1012,
故选:B.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、A【分析】根据众数和中位数的定义:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数;把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;即可得解.【题目详解】由已知,得该组数据中,众数为3,中位数为3,故答案为A.【题目点拨】此题主要考查对众数、中位数概念的理解,熟练掌握,即可解题.7、A【分析】利用中心投影(光由一点向外散射形成的投影叫做中心投影)和平行投影(由平行光线形成的投影是平行投影)的定义即可判断出.【题目详解】解:A.太阳距离地球很远,我们认为是平行光线,因此不是中心投影.
B.台灯的光线是由台灯光源发出的光线,是中心投影;
C.手电筒的光线是由手电筒光源发出的光线,是中心投影;
D.路灯的光线是由路灯光源发出的光线,是中心投影.
所以,只有A不是中心投影.
故选:A.【题目点拨】本题考查了中心投影和平行投影的定义.熟记定义,并理解一般情况下,太阳光线可以近似的看成平行光线是解决此题的关键.8、C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【题目详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【题目点拨】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.9、C【解题分析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故③正确.当x=-2时,y=0,根据对称性当抛物线与x轴的另一个交点坐标为x=×2+2=3.故①;当x=2时,y=4,所以在对称轴的右侧,随着x增大,y在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故②错,④对.选C.10、D【分析】根据旋转的定义进行分析即可解答【题目详解】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.【题目点拨】本题考查了图纸旋转的性质,熟练掌握是解题的关键.二、填空题(每小题3分,共24分)11、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故②正确;由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故④正确;BM、DN、MN存在BM2+DN2=MN2的关系,故③错误.【题目详解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,
由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,
∵∠EAF=45°,
∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,
∴∠EAH=∠EAF=45°,
在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),
∴EH=EF,
∴∠AEB=∠AEF,
∴BE+BH=BE+DF=EF,故④正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,
∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH)=90°-(45°-∠BAH)=45°+∠BAH,
∴∠ANM=∠AEB,
∴∠AEB=∠AEF=∠ANM;故②正确;BM、DN、MN满足等式BM2+DN2=MN2,而非BM+DN=MN,故③错误.故答案为①②④.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,熟记各性质并利用旋转变换作辅助线构造成全等三角形是解题的关键.12、100゜【分析】根据圆周角定理,由∠ACB=130°,得到它所对的圆心角∠α=2∠ACB=260°,用360°-260°即可得到圆心角∠AOB.【题目详解】如图,∵∠α=2∠ACB,而∠ACB=130°,∴∠α=260°,∴∠AOB=360°-260°=100°.故答案为100°.13、【分析】把点A绕点O顺时针旋转90°得到点A′,看其坐标即可.【题目详解】解:由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,由图中可以看出,点A′的坐标为(1,3),
故答案为A′(1,3).【题目点拨】本题考查点的旋转坐标的求法;得到关键点旋转后的位置是解题的关键.14、或【分析】依据沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD的长【题目详解】分两种情况:①若,则,,连接,则,,,设,则,中,,解得,;②若,则,,四边形是正方形,,,,,设,则,,,,解得,,综上所述,的长为或,故答案为或.【题目点拨】此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形15、且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【题目详解】解:根据题意得且,
解得:且k≠1.
故答案是:且k≠1.【题目点拨】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.16、y=2(x+2)2﹣1【解题分析】直接根据“上加下减、左加右减”的原则进行解答即可.【题目详解】由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2−1,由“上加下减”的原则可知,将二次函数y=2x2−1的图象向左平移2个单位可得到函数y=2(x+2)2−1,故答案是:y=2(x+2)2−1.【题目点拨】本题考查的是二次函数图象与几何变换,熟练掌握规律是解题的关键.17、【分析】利用概率公式直接写出答案即可.【题目详解】∵共“微信”、“支付宝”、“银行卡”三种支付方式,∴选择“微信”支付方式的概率为,故答案为:.【题目点拨】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、<2(或x≤2).【解题分析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质三、解答题(共66分)19、,【解题分析】试题分析:用因式分解法解一元二次方程即可.试题解析:,或,,.点睛:解一元二次方程的常用方法:直接开方法,配方法,公式法,因式分解法.20、(1)证明见解析;(2)PA+PB=PF+FC=PC;(3)1+.【分析】(1)欲证明AD是⊙O的切线,只需推知AD⊥AE即可;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP•PD求出AP的长,即可得出答案.【题目详解】(1)证明:先作⊙O的直径AE,连接PE,∵AE是直径,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切线;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴∠PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP•PD,∴AP2=(3+AP)•1,解得:AP=或AP=(舍去),由(2)知△ABC是等边三角形,∴AC=BC=AB=2AP=1+.【题目点拨】此题属于圆的综合题,涉及了圆周角定理,切线的判定与性质,相似三角形的判定与性质,全等三角形的判定与性质等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.21、BF2=FG·EF.【解题分析】由题意根据BE∥AC,可得∠1=∠E,然后有∠1=∠2,可得∠2=∠E,又由∠GFB=∠BFE,可得出△BFG∽△EFB,最后可得出BF2=FG•FE.【题目详解】解:BF2=FG·EF.证明:∵BE∥AC,∴∠1=∠E.∵∠1=∠2,∴∠2=∠E.又∵∠BFG=∠EFB,∴△BFG∽△EFB.∴,∴BF2=FG·EF.【题目点拨】本题考查相似三角形的判定与性质,解答本题的关键是根据BE∥AC,得出∠1=∠E,进而判定△BFG∽△EFB.22、(1)摸出的2个球都是白球的概率为;(2)概率最大的是摸岀的2个球中至少有1个白球.理由见解析.【分析】(1)先画树状图展示所以6种等可能的结果,其中摸出的2个球都是白球的有2种结果,然后根据概率定义求解.(2)根据树状图可知:共有6种等可能的结果,其中摸出的2个球颜色相同的有3种结果,摸出的2个球中至少有1个白球的有5种结果,根据概率公式分别计算出各自的概率,再比较大小即可.【题目详解】(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为;(2)∵摸出的2个球颜色相同概率为、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸岀的2个球中至少有1个白球.【题目点拨】本题考查了列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 猪舍承包合同
- 2025关于门市房租赁合同协议书
- 小区消防维修工程合同模板
- 2025年度集体合同协商与职工退休待遇
- 2025年度土地承包经营权流转与生态农业发展合作合同协议书
- 2025年度旅游行业单位员工劳动合同书(含旅游产品开发及服务质量协议)
- 二零二五年度2025年度餐饮业员工试用期劳动服务合同
- 2025年度体育用品商标许可及赛事赞助合同
- 2025年度环保咨询服务合同环保协议书
- 二零二五年度医生跨区域医疗服务合作合同
- 2025届高考数学一轮复习建议-函数与导数专题讲座课件
- 2024-2030年中国高性能混凝土行业销售规模与投资盈利预测报告
- 心电图基本知识
- 江苏省常州市教育学会2023-2024学年高一上学期期末考试化学试题 (解析版)
- 中医儿科护理课件
- 部编人教版二年级道德与法治上册全册教学设计(含反思)
- 2024年数学三年级上册乘法分配律基础练习题(含答案)
- 中煤电力有限公司招聘笔试题库2024
- (必练)广东省生态环境监测专业技术人员大比武理论试题库(含答案)
- 四年级数学脱式计算练习题100道
- GB/T 18029.1-2024轮椅车第1部分:静态稳定性的测定
评论
0/150
提交评论