湖北省武汉市蔡甸区誉恒联盟2024届九年级数学第一学期期末综合测试试题含解析_第1页
湖北省武汉市蔡甸区誉恒联盟2024届九年级数学第一学期期末综合测试试题含解析_第2页
湖北省武汉市蔡甸区誉恒联盟2024届九年级数学第一学期期末综合测试试题含解析_第3页
湖北省武汉市蔡甸区誉恒联盟2024届九年级数学第一学期期末综合测试试题含解析_第4页
湖北省武汉市蔡甸区誉恒联盟2024届九年级数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市蔡甸区誉恒联盟2024届九年级数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.方程x2+x-12=0的两个根为()A.x1=-2,x2=6 B.x1=-6,x2=2 C.x1=-3,x2=4 D.x1=-4,x2=32.-2019的相反数是()A.2019 B.-2019 C. D.3.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=54004.方程的根是()A.-1 B.0 C.-1和2 D.1和25.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤ D.t≥6.如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为()A. B. C. D.7.用配方法解一元二次方程x2﹣2x=5的过程中,配方正确的是()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=98.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是A.55° B.60° C.65° D.70°9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A. B. C. D.10.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.11.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是()A.把投影灯向银幕的相反方向移动 B.把剪影向投影灯方向移动C.把剪影向银幕方向移动 D.把银幕向投影灯方向移动12.要使分式有意义,则x应满足的条件是()A.x<2 B.x≠2 C.x≠0 D.x>2二、填空题(每题4分,共24分)13.小明家的客厅有一张直径为1.2米,高0.8米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中D点坐标为(2,0),则点E的坐标是_____.14.已知MAX(a,b)=a,其中a>b如果MAX(,0)=0,那么x的取值范围为__________15.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.16.已知线段是线段和的比例中项,且、的长度分别为2和8,则的长度为_________.17.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的黄、白两种颜色的乒乓球若干只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601现从这个口袋中摸出一球,恰好是黄球的概率为_____.18.已知=4,=9,是的比例中项,则=____.三、解答题(共78分)19.(8分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.20.(8分)已知关于x的一元二次方程.(1)当m为何值时,方程有两个不相等的实数根?(2)设方程两根分别为、,且2、2分别是边长为5的菱形的两条对角线,求m的值.21.(8分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x

30

32

34

36

y

40

36

32

28

(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?22.(10分)学习成为现代城市人的时尚,我市图书馆吸引了大批读者,有关部门统计了2018年第四季度到市图书馆的读者的职业分布情况,统计图如图.(1)在统计的这段时间内,共有万人到图书馆阅读.其中商人所占百分比是;(2)将条形统计图补充完整;(3)若今年2月到图书馆的读者共28000名,估计其中约有多少名职工.23.(10分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.24.(10分)如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.25.(12分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.26.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】试题分析:将x2+x﹣12分解因式成(x+4)(x﹣1),解x+4=0或x﹣1=0即可得出结论.x2+x﹣12=(x+4)(x﹣1)=0,则x+4=0,或x﹣1=0,解得:x1=﹣4,x2=1.考点:解一元二次方程-因式分解法2、A【分析】根据只有符号不同的两个数是互为相反数解答即可.【题目详解】解:-1的相反数是1.故选A.【题目点拨】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.3、B【题目详解】根据题意可得整副画的长为(80+2x)cm,宽为(50+2x)cm,则根据长方形的面积公式可得:(80+2x)(50+2x)=1.故应选:B考点:一元二次方程的应用4、C【分析】用因式分解法课求得【题目详解】解:,,解得故选C【题目点拨】本题考查了用因式分解求一元二次方程.5、B【分析】将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【题目详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解不等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.6、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可.【题目详解】解:∵矩形的长为6,宽为3,

∴AB=CD=6,AD=BC=3,

∴弧BD的长=18-12=6,故选:B.【题目点拨】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式7、B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【题目详解】解:方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=5+1,即(x﹣1)2=6,故选:B.【题目点拨】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8、C【分析】根据旋转的性质和三角形内角和解答即可.【题目详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【题目点拨】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.9、D【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据相似三角形的判定得出△BEF∽△DCF,根据相似三角形的性质和三角形面积公式求出即可.【题目详解】解:∵四边形ABCD是平行四边形,E为AB的中点,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故选D.【题目点拨】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键.10、A【解题分析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.11、B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【题目详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A错误;当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B正确,C错误;当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D错误.

故选:B.【题目点拨】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.12、B【解题分析】本题主要考查分式有意义的条件:分母不能为1.【题目详解】解:∵x﹣2≠1,∴x≠2,故选B.【题目点拨】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.二、填空题(每题4分,共24分)13、(4,0)【解题分析】根据相似三角形的判定和性质即可得到结论.【题目详解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案为:(4,0).【题目点拨】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.14、0﹤x﹤1【分析】由题意根据定义得出x2-x<0,通过作出函数y=x2-x的图象,根据图象即可求得x的取值范围.【题目详解】解:由题意可知x2-x<0,画出函数y=x2-x的图象如图:由图象可知x2-x<0的取值范围为0<x<1.故答案为:0<x<1.【题目点拨】本题主要考查二次函数的性质,解题的关键是理解新定义并根据新定义列出关于x的不等式运用数形结合思维分析.15、60π【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【题目详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(cm1).故答案为:60π.【题目点拨】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.16、4【分析】根据线段是线段和的比例中项,得出,将a,b的值代入即可求解.【题目详解】解:∵线段是线段和的比例中项,∴即又∵、的长度分别为2和8,∴∴c=4或c=-4(舍去)故答案为:4【题目点拨】本题考查了比例中项的概念,掌握基本概念,列出等量关系即可解答.17、0.1【分析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出黄球的概率.【题目详解】解:观察表格得:通过多次摸球实验后发现其中摸到黄球的频率稳定在0.1左右,则P黄球=0.1.故答案为:0.1.【题目点拨】本题考查了利用频率估计概率:通过大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性可以根据频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率18、±6;【解题分析】试题解析:是的比例中项,又解得:故答案为:三、解答题(共78分)19、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【题目详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.【题目点拨】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.20、(1);(2)【分析】(1)由根的判别式即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得,又由一元二次方程根与系数的关系,所以有,据此列出关于m的方程求解.【题目详解】(1)∵方程有两个不相等的实数根,∴解得:∴当时,方程有两个不相等的实数根;(2)由题意得:∴解得:或∵2、2分别是边长为5的菱形的两条对角线∴,即∴【题目点拨】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.21、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元时利润最大.【解题分析】试题分析:(1)设一次函数解析式,将表格中任意两组x,y值代入解出k,b,即可求出该解析式;(2)利润等于单件利润乘以销售量,而单件利润又等于每件商品的销售价减去进价,从而建立每件商品的销售价与利润的一元二次方程求解;(3)将w替换上题中的150元,建立w与x的二次函数,化成一般式,看二次项系数,讨论x取值,从而确定每件商品销售价定为多少元时利润最大.试题解析:(1)设该函数的表达式为y=kx+b(k≠0),根据题意,得,解得,∴该函数的表达式为y=-2x+100;(2)根据题意得:(-2x+100)(x-30)="150",解这个方程得,x1=35,x2=45∴每件商品的销售价定为35元或45元时日利润为150元.(3)根据题意得:w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2<0,则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.考点:一次函数与二次函数的实际应用.22、(1)16,;(2)见解析;(3)10500(人).【分析】(1)利用学生数除以其所占的百分比即可得到总人数,然后用商人数除以总人数即可得到商人所占的百分比;(2)根据各职业人数之和等于总人数可得职工的人数,据此可补全图形;(3)利用总人数乘以样本中职工所占百分比即可得到职工人数.【题目详解】解:(1)这段时间,到图书馆阅读的总人数为(万人),其中商人所占百分比为,故答案为,.(2)职工的人数为(万人).补全条形统计图如图所示.(3)估计其中职工人数约为(人).【题目点拨】本题主要考查了条形统计图,扇形统计图及用样本估计总体的知识,能够从两种统计图中整理出解题的有关信息是解题关键.23、证明见解析【解题分析】试题分析:连接OC,OD,根据弦相等,得出它们所对的弧相等,得到=,再得到它们所对的圆心角相等,证明得到又因为即可证明.试题解析:证明:方法一:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,,,,,,,.方法二:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,∵∠CAO=∠CAE+∠EAO,∠AEC=∠AOC+∠EAO,∴∠CAO=∠AEC,在中,∴∠ACO=∠CAO,∴∠ACO=∠AEC,,,.方法三:连接AD,OC,OD,∵AC=DB,=,∴∠ADC=∠DAB,∴CD∥AB,∴∠AEC=∠DCO,∵AC=CD,AO=DO,∴CO⊥AD,∴∠ACO=∠DCO,∴∠ACO=∠AEC,∴AC=AE,∵AC=CD,∴AE=CD.24、(1)证明见解析;(2)证明见解析;(3).【分析】(1)连接CD,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC,根据直径的性质得出∠ABC=90°,根据B是EF的中点得出AB=EF,即∠BAC=∠AFE,则得出三角形相似;(3)根据三角形相似得出,根据AF和CF的长度得出AC的长度,然后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论