河南省南阳市2024届九年级数学第一学期期末统考模拟试题含解析_第1页
河南省南阳市2024届九年级数学第一学期期末统考模拟试题含解析_第2页
河南省南阳市2024届九年级数学第一学期期末统考模拟试题含解析_第3页
河南省南阳市2024届九年级数学第一学期期末统考模拟试题含解析_第4页
河南省南阳市2024届九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省南阳市2024届九年级数学第一学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,抛物线与轴交于、两点,点在一次函数的图像上,是线段的中点,连结,则线段的最小值是()A. B. C. D.2.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0) C.(,0) D.(3,0)3.已知,则的值是()A. B.2 C. D.4.如图,AB是⊙O的直径,弦CD⊥AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.π B.4π C.π D.π5.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.6.下列手机应用图标中,是中心对称图形的是()A. B. C. D.7.下列图形中,是中心对称图形的是()A. B. C. D.8.二次函数y=x2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是()A.y=+3 B.y=+3C.y=﹣3 D.y=﹣39.若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣110.若是方程的两根,则的值是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,现有测试距离为5m的一张视力表,表上一个E的高AB为2cm,要制作测试距离为3m的视力表,其对应位置的E的高CD为____cm.12.cos30°+sin45°+tan60°=_____.13.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.14.如图,一次函数的图象交x轴于点B,交y轴于点A,交反比例函数的图象于点,若,且的面积为2,则k的值为________15.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,1.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_____.16.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.17.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号)__________.18.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)三、解答题(共66分)19.(10分)如图,是圆外一点,是圆一点,交圆于点,.(1)求证:是圆的切线;(2)已知,,求点到直线的距离.20.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形.的顶点均在格点上,建立平面直角坐标系后,点的坐标为,点的坐标为.(1)先将向右平移5个单位,再向下平移1个单位后得到.试在图中画出图形,并写出的坐标;(2)将绕点顺时针旋转后得到,试在图中画出图形.并计算在该旋转过程中扫过部分的面积.21.(6分)已知为实数,关于的方程有两个实数根.(1)求实数的取值范围.(2)若,试求的值.22.(8分)已知关于的方程有两个不相等的实数根.(1)求的取值范围;(2)若,求的值.23.(8分)如图,已知方格纸中的每个小方格都是相同的正方形(边长为1),方格纸上有一个角∠AOB,A,O,B均为格点,请回答问题并只用无刻度直尺和铅笔,完成下列作图并简要说明画法:(1)OA=_____,(2)作出∠AOB的平分线并在其上标出一个点Q,使.24.(8分)如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.下面是小颖的探究过程,请补充完整:(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:位置位置位置位置位置位置位置在、和的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数.(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:当为等腰三角形时,的长约为25.(10分)如图,△ABC内接于⊙O,AB=AC=10,BC=12,点E是弧BC的中点.(1)过点E作BC的平行线交AB的延长线于点D,求证:DE是⊙O的切线.(2)点F是弧AC的中点,求EF的长.26.(10分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点.①若点P在抛物线上,且,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】先求得A、B两点的坐标,设,根据之间的距离公式列出关于的函数关系式,求得其最小值,即可求得答案.【题目详解】令,则,解得:,∴A、B两点的坐标分别为:,设点的坐标为,∴,∵,∴当时,有最小值为:,即有最小值为:,∵A、B为抛物线的对称点,对称轴为y轴,∴O为线段AB中点,且Q为AP中点,∴.故选:A.【题目点拨】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得的最小值是解题的关键.2、C【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【题目详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.【题目点拨】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.3、C【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【题目详解】解:∵∴x=5k(k≠0),y=2k(k≠0)∴故选:C.【题目点拨】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.4、D【分析】根据圆周角定理求出∠COB,进而求出∠AOC,再利用垂径定理以及锐角三角函数关系得出OC的长,再结合扇形面积求出答案.【题目详解】解:∵,∴,∴,∵,,∴,,∴,∴阴影部分的面积为,

故选:D.【题目点拨】本题考查了圆周角定理,垂径定理,解直角三角形,扇形面积公式等知识点,能求出线段OC的长和∠AOC的度数是解此题的关键.5、B【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【题目详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.【题目点拨】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.6、B【解题分析】根据中心对称图形的概念判断即可.【题目详解】A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形故选:B.【题目点拨】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【题目详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【题目点拨】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键.8、D【分析】先求出原抛物线的顶点坐标,再根据平移,得到新抛物线的顶点坐标,即可得到答案.【题目详解】∵原抛物线的顶点为(0,0),∴向左平移1个单位,再向下平移1个单位后,新抛物线的顶点为(﹣1,﹣1).∴新抛物线的解析式为:y=﹣1.故选:D.【题目点拨】本题主要考查二次函数图象的平移规律,通过平移得到新抛物线的顶点坐标,是解题的关键.9、C【分析】根据根的判别式()即可求出答案.【题目详解】由题意可知:∴∵∴且,故选:C.【题目点拨】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k的取值范围.10、D【解题分析】试题分析:x1+x2=-=6,故选D考点:根与系数的关系二、填空题(每小题3分,共24分)11、1.1【分析】证明△OCD∽△OAB,然后利用相似比计算出CD即可.【题目详解】解:OB=5m,OD=3m,AB=1cm,∵CD∥AB,∴△OCD∽△OAB,∴,即,∴CD=1.1,即对应位置的E的高CD为1.1cm.故答案为1.1.【题目点拨】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用三角形相似的性质求相应线段的长.12、【分析】根据特殊角的三角函数值、二次根式的化简进行计算,在计算时,需要针对每个考点分别进行计算,然后求得计算结果.【题目详解】cos30°+sin45°+tan60°===故填:.【题目点拨】解决此类题目的关键是熟记特殊角的三角函数值.13、【分析】由题意可得共有5种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解.【题目详解】∵共有5种等可能的结果,无理数有:,共2种情况,∴取到无理数的概率是:.故答案为:.【题目点拨】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.14、【解题分析】过点C作CD⊥x轴于点D,根据AAS可证明△AOB≌△CDB,从而证得S△AOC=S△OCD,最后再利用k的几何意义即可得到答案.【题目详解】解:过点C作CD⊥x轴于点D,如图所示,∵在△AOB与△CDB中,,∴△AOB≌△CDB(AAS),∴S△AOB=S△CDB,∴S△AOC=S△OCD,∵S△AOC=2,∴S△OCD=2,∴,∴k=±4,又∵反比例函数图象在第一象限,k>0,∴k=4.【题目点拨】本题考查全等三角形的判定与性质,反比例函数中比例系数k的几何意义,熟练掌握判定定理及k的几何意义是解题的关键.15、【解题分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.【题目详解】根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有1种结果,所以两次摸出的小球标号相同的概率是,故答案为.【题目点拨】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.

错因分析中等难度题.失分的原因有两个:(1)没有掌握放回型和不放回型概率计算的区别;(2)未找全标号相同的可能结果.

16、-2或1.【解题分析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.17、【分析】根据正五边形的概念可证得,利用对应边成比例列方程即可求得答案.【题目详解】如图,由边框总长为40cm的五角星,知:,ABCDE为圆内接正五边形,∴,,∴,∴,同理:,∴,∴,设,则,∵,,∴,,即:,化简得:,配方得:,解得:2(负值已舍),故答案为:2【题目点拨】本题考查了圆内接正五边形的性质、相似三角形的判定和性质、一元二次方程的解法,判定是正确解答本题的关键.18、有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【题目详解】解:(x+1)(x-3)=2x-5整理得:,即,配方得:,解得:,,∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【题目点拨】此题考查解一元二次方程,或者求判别式与根的个数的关系.三、解答题(共66分)19、(1)详见解析;(2).【分析】(1)作于点,结合,得,进而得,即可得到结论;(2)作于点,设圆的半径为,根据勾股定理,列出关于的方程,求出的值,再根据三角形的面积法,即可得到答案.【题目详解】(1)作于点,∵,∴,∵,∴,∵∴,即:,∴是圆的切线.(2)作于点,设圆的半径为,则,在中,,解得:,∴,∵,∴,即点到直线的距离为:.【题目点拨】本题主要考查圆的切线的判定和性质定理以及勾股定理,添加辅助线,构造直角三角形,是解题的关键.20、(1)见解析,的坐标为;(2)见解析,【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理求出A1C1的长度,然后根据弧长公式列式计算即可得解.【题目详解】解:(1)如图所示,即为所求作的三角形,∴点的坐标为;(2)如图所示,即为所求作的三角形,根据勾股定理,,∴扫过的面积:;【题目点拨】本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算公式,熟练掌握网格结构并准确找出对应点的位置是解题的关键.21、(1).(2)-3.【分析】(1)把方程化为一般式,根据方程有两个实数根,可得,列出关于的不等式,解出的范围即可;(2)根据一元二次方程根与系数的关系,可得,,再将原等式变形为

,然后整体代入建立关于的方程,解出值并检验即可.【题目详解】(1)解:原方程即为.,∴.∴.∴;(2)解:由根系关系,得,∵,∴∴.即.解得,或∵∴.故答案为(1).(2)-3.【题目点拨】本题考查一元二次方程根的判别式及应用,一元二次方程的根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.22、(1)且;(2)8【分析】(1)利用根的判别式求解即可;(2)利用求根公式求解即可.【题目详解】解:(1)∵方程有两个不相等的实数根,∴且,解得且.∴的取值范围是且.(2)∵是方程的两个根,∴,,∴,即.解得(舍去),,经检验,是原方程的解.故的值是8.【题目点拨】本题考查的知识点是一元二次方程根与系数的关系,熟记根的判别式以及求根公式是解此题的关键.23、5【解题分析】(1)依据勾股定理即可得到OA的长;(2)取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.【题目详解】解:(1)由勾股定理,可得AO==5,故答案为5;(2)如图,取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;如图,取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【题目点拨】本题考查作图﹣复杂作图、角平分线的性质等知识,解题的关键是熟练掌握等腰三角形的性质的应用,角平分线的性质的应用,勾股定理以及相似三角形的性质.24、(1);(2)画图见解析;(3)或或【分析】(1)根据表格的数据,结合自变量与函数的定义,即可得到答案;(2)根据列表、描点、连线,即可得到函数图像;(3)可分为AE=DF,DF=DG,AE=DG,结合图像,即可得到答案.【题目详解】解:(1)根据表格可知,从0开始,而且不断增大,则DG是自变量;和随着DG的变化而变化,则AE和DF都是DG的函数;故答案为:,,.(2)函数图像,如图所示:(3)∵为等腰三角形,则可分为:AE=DF或DF=DG或AE=DG,三种情况;根据表格和函数图像可知,①当AE=DG=时,为等腰三角形;②当AE=时,DF=DG=5.00,为等腰三角形;③当AE=DF=时,为等腰三角形;故答案为:或或.【题目点拨】本题考查了函数的定义,自变量的定义,画函数图像,以及等腰三角形的定义,解题的关键是掌握函数的定义,准确画出函数图像.25、(1)见解析;(2)【分析】(1)连接AE,由等弦对等弧可得,进而推出,可知AE为⊙O的直径,再由等腰三角形三线合一得到AE⊥BC,根据DE∥BC即可得DE⊥AE,即可得证;(2)连接BE,AF,OF,OF与AC交于点H,AE与BC交于点G,利用勾股定理求出AG,然后求直径AE,再利用垂径定理求出HF,最后用勾股定理求AF和EF.【题目详解】证明:(1)如图,连接AE,∵AB=AC∴又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论