2024届陕西省西安市雁塔区高新一中数学九上期末质量跟踪监视模拟试题含解析_第1页
2024届陕西省西安市雁塔区高新一中数学九上期末质量跟踪监视模拟试题含解析_第2页
2024届陕西省西安市雁塔区高新一中数学九上期末质量跟踪监视模拟试题含解析_第3页
2024届陕西省西安市雁塔区高新一中数学九上期末质量跟踪监视模拟试题含解析_第4页
2024届陕西省西安市雁塔区高新一中数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省西安市雁塔区高新一中数学九上期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A. B. C. D.2.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是弧AB的中点,连接AC、BC,则图中阴影部分面积是()A. B.C. D.3.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE∶EB=4∶1,EF⊥AC于点F,连接FB,则tan∠CFB的值等于()A. B. C. D.54.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为()A. B. C. D.5.下列二次函数,图像与轴只有一个交点的是()A. B.C. D.6.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=27.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>-1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,观察两枚骰子向上一面的点数情况.则下列事件为随机事件的是()A.点数之和等于1 B.点数之和等于9C.点数之和大于1 D.点数之和大于129.已知(x2+y2)(x2+y2-1)-6=0,则x2+y2的值是()A.3或-2 B.-3或2 C.3 D.-210.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形()A.一定不相似 B.不一定相似 C.一定相似 D.不能确定11.关于x的一元二次方程中有一根是1,另一根为n,则m与n的值分别是()A.m=2,n=3 B.m=2,n=-3 C.m=2,n=2 D.m=2,n=-212.把分式中的、都扩大倍,则分式的值()A.扩大倍 B.扩大倍 C.不变 D.缩小倍二、填空题(每题4分,共24分)13.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B=_____°.14.将点P(-1,2)向左平移2个单位,再向上平移1个单位所得的对应点的坐标为_____.15.如图,在△ABC中,∠A=90°,AB=AC=2,以AB为直径的圆交BC于点D,求图中阴影部分的面积为_____.16.点与关于原点对称,则__________.17.如图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为__.18.如图,在菱形c中,分别是边,对角线与边上的动点,连接,若,则的最小值是___.三、解答题(共78分)19.(8分)为了维护国家主权,海军舰队对我国领海例行巡逻.如图,正在执行巡航任务的舰队以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔在北偏东30°方向上.(1)求∠APB的度数.(2)已知在灯塔P的周围40海里范围内有暗礁,问舰队继续向正东方向航行是否安全?20.(8分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.21.(8分)已知是一张直角三角形纸片,其中,,小亮将它绕点逆时针旋转后得到,交直线于点.(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.(2)如图2,当,求为等腰三角形时的度数.22.(10分)已知,正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.

(1)如图甲,求证:;(2)如图乙,连接,若,,求的值.23.(10分)如图,已知,直线垂直平分交于,与边交于,连接,过点作平行于交于点,连.(1)求证:;(2)求证:四边形是菱形;(3)若,求菱形的面积.24.(10分)解下列方程:(1)x2﹣2x﹣2=0;(2)(x﹣1)(x﹣3)=1.25.(12分)如图,在平面直角坐标系中,抛物线的图象与x轴交于,B两点,与y轴交于点,对称轴与x轴交于点H.(1)求抛物线的函数表达式(2)直线与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若的面积为,求点P,Q的坐标.(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标不存在,请说明理由.26.已知抛物线y=-x2+bx+c与直线y=-4x+m相交于第一象限内不同的两点A(5,n),B(3,9),求此抛物线的解析式.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据a、b的正负不同,则函数y=ax+b与y=bx2+ax的图象所在的象限也不同,针对a、b进行分类讨论,从而可以选出正确选项.【题目详解】若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选A.【题目点拨】本题考查二次函数的图象、一次函数的图象,解题的关键是明确一次函数图象和二次函数图象的特点,利用分类讨论的数学思想解答.2、A【解题分析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2=,所以阴影部分面积是扇形面积减去四边形面积即.故选A.3、C【解题分析】根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴=∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==故选C.4、D【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子-木条=4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:木条-绳子=1,据此列出方程组即可.【题目详解】由题意可得,.故选:D.【题目点拨】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.5、C【分析】根据抛物线y=ax2+bx+c(a≠0)与x轴只有一个交点,可知b2-4ac=0,据此判断即可.【题目详解】解:∵二次函数图象与x轴只有一个交点,∴b2-4ac=0,A、b2-4ac=22-4×1×(-1)=8,故本选项错误;B、b2-4ac=72-4×(-2)×(-7)=-7,故本选项错误;C、b2-4ac=(-12)2-4×4×9=0,故本选项正确;D、b2-4ac=(-4)2-4×1×16=-48,故本选项错误,故选:C.【题目点拨】本题考查了二次函数与x轴的交点,根据二次函数y=ax2+bx+c(a≠0)的图象与x轴只有一个交点时,得到b2-4ac=0是解题的关键.6、C【解题分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【题目详解】A、不是方程,故本选项错误;B、方程含有两个未知数,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、不是整式方程,故本选项错误.故选:C.【题目点拨】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.7、C【解题分析】试题分析:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.考点:二次函数的性质8、B【分析】根据随机事件的定义逐项判断即可.【题目详解】A、点数之和等于1,是不可能事件,不合题意;B、点数之和等于9,是随机事件,符合题意;C、点数之和大于1,是必然事件,不合题意;D、点数之和大于12,是不可能事件,不合题意;故选:B【题目点拨】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【分析】设m=x2+y2,则有,求出m的值,结合x2+y20,即可得到答案.【题目详解】解:根据题意,设m=x2+y2,∴原方程可化为:,∴,解得:或;∵,∴,∴;故选:C.【题目点拨】本题考查了换元法求一元二次方程,解题的关键是熟练掌握解一元二次方程的方法和步骤.10、C【解题分析】试题解析:∵一个三角形的两个内角分别是∴第三个内角为又∵另一个三角形的两个内角分别是∴这两个三角形有两个内角相等,∴这两个三角形相似.故选C.点睛:两组角对应相等,两三角形相似.11、C【分析】将根是1代入一元二次方程,即可求出m的值,再解一元二次方程,可求出两个根,即可求出n的值.【题目详解】解:∵将1代入方程,得到:1-3+m=0,m=2∴∴解得x1=1,x2=2∴n=2故选C.【题目点拨】本题主要考查了一元二次方程,熟练解满足一元二次方程以及解一元二次方程是解决本题的关键.12、C【分析】依据分式的基本性质进行计算即可.【题目详解】解:∵a、b都扩大3倍,∴∴分式的值不变.故选:C.【题目点拨】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.二、填空题(每题4分,共24分)13、35°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,根据三角形内角与外角的关系可得∠B的大小.【题目详解】∵同弧所对的圆周角相等求得∠D=∠A=42°,且∠APD=77°是三角形PBD外角,∴∠B=∠APD−∠D=35°,故答案为:35°.【题目点拨】此题考查圆周角定理及其推论,解题关键明确三角形内角与外角的关系.14、(-1,1)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【题目详解】原来点的横坐标是-1,纵坐标是2,向左平移2个单位,再向上平移1个单位得到新点的横坐标是-1−2=-1,纵坐标为2+1=1.即对应点的坐标是(-1,1).故答案填:(-1,1).【题目点拨】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15、1【分析】连接AD,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.【题目详解】解:连接AD,

∵AB=BC=2,∠A=90°,∴∠C=∠B=45°,∴∠BAD=45°,∴BD=AD,∴BD=AD=,∴由BD,AD组成的两个弓形面积相等,∴阴影部分的面积就等于△ABD的面积,∴S△ABD=AD•BD=××=1.故答案为:1.【题目点拨】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.16、【分析】直接利用关于原点对称点的性质分析得出答案.【题目详解】解:∵点P(-4,7)与Q(1m,-7)关于原点对称,∴-4=-1m,解得:m=1,故答案为:1.【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号是解题关键.17、1【分析】过点F作FC⊥x轴于点C,设点F的坐标为(a,b),从而得出OC=a,FC=b,根据矩形的性质可得AB=FC=b,BF=AC,结合已知条件可得OA=3a,BF=AC=2a,根据点E、F都在反比例函数图象上可得EA=,从而求出BE,然后根据三角形的面积公式即可求出ab的值,从而求出k的值.【题目详解】解:过点F作FC⊥x轴于点C,设点F的坐标为(a,b)∴OC=a,FC=b∵∴四边形FCAB是矩形∴AB=FC=b,BF=AC∵∴,即AC∴OC=OA-AC=a解得:OA=3a,BF=AC=2a∴点E的横坐标为3a∵点E、F都在反比例函数的图象上∴∴点E的纵坐标,即EA=∴BE=AB-EA=∵∴即解得:∴故答案为:1.【题目点拨】此题考查的是反比例函数与图形的面积问题,掌握矩形的判定及性质、反比例函数比例系数与图形的面积关系和三角形的面积公式是解决此题的关键.18、【分析】作点Q关于BD对称的对称点Q’,连接PQ,根据两平行线之间垂线段最短,即有当E、P、Q’在同一直线上且时,的值最小,再利用菱形的面积公式,求出的最小值.【题目详解】作点Q关于BD对称的对称点Q’,连接PQ.∵四边形ABCD为菱形∴,∴当E、P、Q’在同一直线上时,的值最小∵两平行线之间垂线段最短∴当时,的值最小∵∴,∴∵∴解得∴的最小值是.故答案为:.【题目点拨】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键.三、解答题(共78分)19、(1);(2)安全.【分析】(1)如图(见解析),先根据方位角的定义可得,再根据平行线的判定与性质可得,然后根据角的和差即可得;(2)设海里,分别在和中,解直角三角形建立等式,求出x的值,由此即可得出答案.【题目详解】(1)如图,过点P作于点C,由题意得:海里,,,;(2)由垂线段最短可知,若海里,则舰队继续向正东方向航行是安全的,设海里,在中,,即,解得,在中,,即,解得,,,解得,即海里,,舰队继续向正东方向航行是安全的.【题目点拨】本题考查了方位角、平行线的判定与性质、解直角三角形等知识点,较难的是题(2),将问题正确转化为求PC的长是解题关键.20、(1)2s(2)①证明见解析,②【解题分析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴AF=3cm,由①知:EF平分∠AEC,∴∠AEF=∠CEF=∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴EF=3cm.21、(1)BD与FM互相垂直,理由见解析;(2)β的度数为30°或75°或120°.【分析】(1)由题意设直线BD与FM相交于点N,即可根据旋转的性质判断直线BD与线段MF垂直;(2)根据旋转的性质得∠MAD=β,分类讨论:当KA=KD时,根据等腰三角形的性质得∠KAD=∠D=30°,即β=30°;当DK=DA时,根据等腰三角形的性质得∠DKA=∠DAK,然后根据三角形内角和可计算出∠DAK=75°,即β=75°;当AK=AD时,根据等腰三角形的性质得∠AKD=∠D=30°,然后根据三角形内角和可计算出∠KAD=120°,即β=120°.【题目详解】解:(1)BD与FM互相垂直,理由如下设此时直线BD与FM相交于点N∵∠DAB=90°,∠D=30°∴∠ABD=90°-∠D=60°,∴∠NBM=∠ABD=60°由旋转的性质得△ADB≌△AMF,∴∠D=∠M=30°∴∠MNB=180°-∠M-∠NBM=180°-30°-60°=90°∴BD与FM互相垂直(2)当KA=KD时,则∠KAD=∠D=30°,即β=30°;当DK=DA时,则∠DKA=∠DAK,∵∠D=30°,∴∠DAK=(180°﹣30°)÷2=75°,即β=75°;当AK=AD时,则∠AKD=∠D=30°,∴∠KAD=180°﹣30°﹣30°=120°,即β=120°,综上所述,β的度数为30°或75°或120°.【题目点拨】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.应用分类讨论思想和等腰三角形的性质是解决问题的关键.22、(1)证明见解析;(2).【分析】(1)由正方形的性质得出BC=DC,∠BCG=∠DCE=90°,利用角边角证明△BGC≌△DEC,然后可得出CG=CE;

(2)由线段的和差,正方形的性质求出正方形的边长为3,根据勾股定理求出线段BD=6,过点G作GH⊥DB,根据勾股定理可得出HG=DH=2,进而求出BH=4,BG=2,在Rt△HBG中可求出cos∠DBG的值.【题目详解】解:(1)∵四边形ABCD是正方形,

∴BC=DC,∠BCG=∠DCE=90°,

又∵BF⊥DE,

∴∠GFD=90°,

又∵∠GBC+∠BGC+∠GCB=180°,

∠GFD+∠FDG+∠DGF=180°,

∠BGC=∠DGF,∴∠CBG=∠CDE,

在△BGC和△DEC中,,∴△BGC≌△DEC(ASA),

∴CG=CE;

(2)过点G作GH⊥BD,设CE=x,∵CG=CE,∴CG=x,

又∵BE=BC+CE,DC=DG+GC,BC=DC,

BE=4,DG=2,

∴4−x=2+x,解得:x=,∴BC=3,

在Rt△BCD中,由勾股定理得:,又易得△DHG为等腰直角三角形,∴根据勾股定理可得HD=HG=2,

又∵BD=BH+HD,

∴BH=6-2=4,

在Rt△HBG中,由勾股定理得:,.【题目点拨】本题综合考查了正方形的性质,全等三角形的判定与性质,同角的余角相等,勾股定理,解直角三角形等知识点,重点掌握全等三角形的判定与性质,难点构建直角三角形求角的余弦值.23、(1)证明见解析;(2)证明见解析;(3)24.【分析】(1)根据线段垂直平分线的性质即可得出答案;(2)先判定AECF是平行四边形,根据对角线垂直,即可得出答案;(3)根据勾股定理求出DE的值,根据“菱形的面积等于对角线乘积的一半”计算即可得出答案.【题目详解】(1)证明:由图可知,又∵,∴,∴;解:(2)由(1)知:∴四边形是平行四边形,又∵∴是菱形;(3)在中,∴;【题目点拨】本题考查的是菱形,难度适中,需要熟练掌握菱形的判定以及菱形面积的公式.24、(1)x1=+1,x2=﹣+1;(2)x1=5,x2=﹣1【分析】(1)用配方法解方程;(2)先化简为一元二次方程的一般形式,再用因式分解法解方程.【题目详解】解:⑴x2-2x+1=3,(x-1)2=3,x-1=±,,;⑵x2-x-3x+3=1x2-4x-5=0(x-5)(x+1)=0x1=5,x2=-1【题目点拨】本题考查用配方法和因式分解法解一元二次方程.用因式分解法解一元二次方程的一般步骤是:①移项,将方程的右边化为0;②化积,把方程左边因式分解,化成两个一次因式的积;③转化,令每个因式都等于零,转化为两个一元一次方程;④求解,解这两个一元一次方程,它们的解就是原方程的解.25、(1);(2);(3)【分析】(1)利用对称轴和A点坐标可得出,再设,代入C点坐标,求出a的值,即可得到抛物线解析式;(2)求C点和E点坐标可得出CE的长,再联立直线与抛物线解析式,得到,设点P,Q的横坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论